
ANDERSON MATTHEUS MALISZEWSKI

WILLIAN BAUM

PERFORMANCE CHARACTERIZATIONS OF IAAS PRIVATE CLOUDS FOR

SCIENTIFIC AND ENTERPRISE WORKLOADS

Três de Maio

2017

ANDERSON MATTHEUS MALISZEWSKI

WILLIAN BAUM

PERFORMANCE CHARACTERIZATIONS OF IAAS PRIVATE CLOUDS FOR

SCIENTIFIC AND ENTERPRISE WORKLOADS

Undergraduate Thesis

Sociedade Educacional Três de Maio

Faculdade Três de Maio

Computer Networks Technology

Advisor:

Ph.D. Dalvan Griebler

Três de Maio

2017

TERMO DE APROVAÇÃO

ANDERSON MATTHEUS MALISZEWSKI

WILLIAN BAUM

PERFORMANCE CHARACTERIZATIONS ON IAAS PRIVATE CLOUDS FOR

SCIENTIFIC AND ENTERPRISE WORKLOADS

Relatório aprovado como requisito parcial para obtenção do título de Tecnólogo em

Redes de Computadores concedido pela Faculdade de Tecnologia em Redes de

Computadores da Sociedade Educacional Três de Maio, pela seguinte Banca

examinadora:

Orientador: Prof Dalvan Griebler, Ph.D.

Faculdade de Tecnologia em Redes de Computadores da SETREM

M.Sc. Tiago Seibel

Faculdade de Tecnologia em Redes de Computadores da SETREM

M.Sc. Samuel Souza

Faculdade de Tecnologia em Redes de Computadores da SETREM

Dr. Claudio Schepke

Universidade Federal do Pampa - Unipampa

Profa. Vera Lúcia Lorenset Benedetti, M.Sc. - Coordenação do Curso de Tecnologia

em Redes de Computadores da SETREM Faculdade de Tecnologia em Redes de

Computadores da SETREM

Três de Maio, 19 de junho de 2017

Este trabalho é dedicado as nossas famílias por todo

o apoio e pela paciência nos momentos em que es-

tivemos ocupados e ausentes.

AGRADECIMENTOS

À faculdade SETREM, seu corpo docente e direção que oportunizaram a re-

alização deste trabalho.

Ao orientador Dalvan Griebler, pela oportunidade de aprendizado e confiança

em nossos estudos.

À equipe do LARCC, principalmente aos colegas Carlos Franco Maron e Adri-

ano Wogel, pelo acompanhamento, discussões e suporte.

"This is your last chance. After this,

there is no turning back. You take the

blue pill — the story ends, you wake

up in your bed and believe whatever

you want to believe. You take the red

pill — you stay in Wonderland, and I

show you how deep the rabbit hole

goes. Remember: all I’m offering is

the truth. Nothing more."

Morpheus, Matrix

ABSTRACT

Private IaaS clouds offer an attractive environment to be used in enterprise and sci-

entific fields providing advantages such as scalability, security and avoids dependence

on third parties. However, one of the challenges is to port applications to the cloud

environment without compromising performance. In response to this, the goal of this

text is to characterize the applications performance in private IaaS clouds using sci-

entific and enterprise applications. Therefore, the CloudStack was used to manage

clouds and KVM and LXC-based were deployed as virtualization technologies. To rep-

resent real-world applications from the scientific and enterprise fields, it was used the

NPB-OMP and PARSEC suite. These applications were benchmarked to characterize

the high-performance and multi-tenancy environment. Statistical method was used to

verify if there were significant differences among the clouds in each proposed envi-

ronment. The results reveals that scientific and enterprise workloads are statistically

different in the majority of the experiments performed in KVM and LXC-based clouds,

however there are results with non-significant differences.

Keywords: Computer Network, Cloud Computing, CloudStack, KVM, LXC,

IaaS, Multi-Tenancy.

RESUMO

As nuvens privadas IaaS oferecem um ambiente atraente para serem usado

nos âmbitos empresariais e científicos, provisionando vantagens como escalabilidade,

segurança e evitando a dependência de terceiros. No entanto, um dos desafios é por-

tar as aplicações para o ambiente da nuvem sem comprometer seu desempenho. Em

resposta a isso, o objetivo deste trabalho é caracterizar o desempenho das aplicações

em nuvens privadas IaaS usando aplicações científicas e empresariais. Para tanto,

o Cloudstack foi utilizado para gerenciar as nuvens KVM e LXC foram implantadas

como tecnologias de virtualização. Para representar as aplicações do mundo real

dos campos científico e empresarial, utilizou-se as suites NPB-OMP e PARSEC. Es-

sas aplicações foram comparadas para caracterizar o ambiente de alto desempenho

e multi usuários. Então, o método estatístico foi utilizado para verificar se houveram

diferenças significativas entre as nuvens em cada ambiente proposto. Os resultados

revelam que as cargas de trabalho das aplicações científicas e empresariais são esta-

tisticamente diferentes na maioria dos experimentos realizados em nuvens com KVM

e LXC, porém existem resultados com diferenças não significativas.

Palavras-Chaves: Redes de Computadores, Computação em Nuvem, Cloud-

Stack, KVM, LXC, IaaS, Multi-Tenancy.

LIST OF FIGURES

2.1 A process with three threads (a). Three processes, each one with a
thread (b). 45

2.2 Serial problem execution. 49

2.3 Parallel problem execution. 50

2.4 I/O and CPU bound comparison. 51

2.5 Significance Level Example. 55

2.6 Distributed System example. 62

2.7 Cluster example. 63

2.8 Pauá Grid Project. 65

2.9 Virtualization Layers. 67

2.10 Where hypervisor resides. 69

2.11 Comparison between type 1 and typer 2 hypervisors. 70

2.12 Kernel-based Virtual Machine Structure. 70

2.13 KVM Components. 71

10

2.14 QEMU/KVM execution flow. 72

2.15 Comparing the structure of KVM and LXC. 74

2.16 Service Models. 79

2.17 CloudStack modules. 81

2.18 CloudStack Architecture. 82

2.19 Openstack Software Diagram. 84

2.20 OpenStack Architecture. 85

2.21 OpenNebula Components. 89

2.22 OpenNebula System. 90

2.23 Multi-Tenancy Overview. 100

2.24 Bodytrack Structure. 112

2.25 Dedup Structure. 114

2.26 Facesim Structure. 115

2.27 Ferret Structure. 116

2.28 Fluidanimate Structure. 118

2.29 Raytrace Structure. 120

2.30 Example of Monte Carlo Method used on Swaptions. 121

2.31 Vips Structure. 123

2.32 X264 Structure. 124

2.33 Integer Sort Specification. 126

11

2.34 Representation of the EP benchmark in a simplified flowchart. . . . 128

2.35 The main iteration in CG benchmark. 129

2.36 Matrix and vector organization in Kernel CG with nine processors. . 130

2.37 Kernel MG processor topology and communication standard with
four processors. 131

2.38 Multigrid V-cycle pattern. 131

2.39 Kernel FT partitioning/communicating with four processors. 133

2.40 NPB BT multi-partition decomposition and algorithm with nine MPI
ranks. 134

2.41 The ADI pattern. 135

2.42 Seven stages of two-dimensional pipeline for processing points of
3x3x3 lattice. 136

2.43 Several stages of processing in the hyperplane algorithm. 136

2.44 Two-dimensional tiling of three-dimensional mesh. 137

2.45 DT Shuffle. 139

2.46 ED - Embarrassingly Distributed pattern. 140

2.47 HC - Helical Chain pattern. 140

2.48 VP - Visualization Pipeline pattern. 141

2.49 MB - Mixed Bag pattern. 141

3.1 LARCC - Laboratory of Advanced Researches for Cloud Computing. 145

3.2 Search process for related works. 149

3.3 Physical environment . 174

12

3.4 Performance Characterization of Enterprise Applications (Core Load).177

3.5 Performance Characterization of Enterprise Applications (Memory
Usage). 179

3.6 Performance Characterization of Enterprise Applications (I/O). . . . 181

3.7 Performance Characterization of Enterprise Applications (Cache Miss).182

3.8 Methodology followed in the evaluation of high performance scenario
in enterprise applications. 183

3.9 High Performance Scenario. 191

3.10 Deeper investigation (Dedup and Vips). 192

3.11 Conf1: Methodology followed in the evaluation of enterprise applica-
tions in multi-tenancy scenario. 194

3.12 Description of the Parsec multi-tenancy scenario with same applica-
tions on 2 concurrent users. 195

3.13 MultiTenancy-User1 Scenario (Same Applications with 2 concurrent
users). 196

3.14 MultiTenancy-User2 Scenario (Same Applications with 2 concurrent
users). 197

3.15 Description of the Parsec multi-tenancy scenario with different appli-
cations on 2 concurrent users. 198

3.16 Multi-tenancy-User1 Scenario (Different Applications with 2 concur-
rent users). 199

3.17 Multi-tenancy-User2 Scenario (Different Applications with 2 concur-
rent users). 200

3.18 Conf2: Methodology followed in the evaluation of enterprise applica-
tions in multi-tenancy scenario. 200

13

3.19 Description of the Parsec multi-tenancy scenario with same applica-
tions on 3 concurrent users. 201

3.20 Multi-tenancy-User1 Scenario (Same Applications with 3 concurrent
users). 203

3.21 Multi-tenancy-User2 Scenario (Same Applications with 3 concurrent
users). 204

3.22 Multi-tenancy-User3 Scenario (Same Applications with 3 concurrent
users). 205

3.23 Description of the Parsec multi-tenancy scenario with different appli-
cations on 3 concurrent users. 206

3.24 Multi-tenancy-User1 Scenario (Different Applications with 3 concur-
rent users). 207

3.25 Multi-tenancy-User2 Scenario (Different Applications with 3 concur-
rent users). 207

3.26 Multi-tenancy-User3 Scenario (Different Applications with 3 concur-
rent users). 208

3.27 Conf3: Methodology followed in the evaluation of enterprise applica-
tions in multi-tenancy scenario. 209

3.28 Description of Parsec multi-tenancy scenario with same applications
on 4 concurrent users. 210

3.29 Multi-tenancy-User1 Scenario (Same Applications with 4 concurrent
users). 212

3.30 Multi-tenancy-User2 Scenario (Same Applications with 4 concurrent
users). 213

3.31 Multi-tenancy-User3 Scenario (Same Applications with 4 concurrent
users). 214

3.32 Multi-tenancy-User4 Scenario (Same Applications with 4 concurrent
users). 215

14

3.33 Description of Parsec multi-tenancy scenario with different applica-
tions on 4 concurrent users. 216

3.34 Multi-tenancy-User1 Scenario (Different Applications with 4 concur-
rent users). 217

3.35 Multi-tenancy-User2 Scenario (Different Applications with 4 concur-
rent users). 217

3.36 Multi-tenancy-User3 Scenario (Different Applications with 4 concur-
rent users). 217

3.37 Multi-tenancy-User4 Scenario (Different Applications with 4 concur-
rent users). 218

3.38 Performance Characterization of Scientific Applications (Core Load). 220

3.39 Performance Characterization of Scientific Applications (Memory Us-
age). 222

3.40 Performance Characterization of Scientific Applications (I/O). 224

3.41 Performance Characterization of Scientific Applications (Cache Miss).225

3.42 Methodology followed in the evaluation of scientific applications in
high performance scenario. 226

3.43 High Performance Scenario. 231

3.44 Conf1: Methodology followed in the evaluation of scientific applica-
tions in multi-tenancy scenario. 232

3.45 Description of NPB multi-tenancy scenario with same applications
on 2 concurrent users. 232

3.46 Multi-tenancy-User1 Scenario (Same Application with 2 concurrent
users). 234

3.47 Multi-tenancy-User2 Scenario (Same Application with 2 concurrent
users). 235

15

3.48 Description of NPB multi-tenancy environment with different applica-
tions on 3 concurrent users. 236

3.49 Multi-tenancy-User1 Scenario (Different Applications with 2 concur-
rent users). 237

3.50 Multi-tenancy-User2 Scenario (Different Applications with 2 concur-
rent users). 237

3.51 Conf2: Methodology followed in the evaluation of scientific applica-
tions in multi-tenancy scenario. 238

3.52 Description of NPB multi-tenancy environment with same applica-
tions on 3 concurrent users. 239

3.53 Multi-tenancy-User1 Scenario (Same Application with 3 concurrent
users). 240

3.54 Multi-tenancy-User2 Scenario (Same Application with 3 concurrent
users). 241

3.55 Multi-tenancy-User3 Scenario (Same Application with 3 concurrent
users). 242

3.56 Description of NPB multi-tenancy scenario with different applications
on 3 concurrent users. 243

3.57 Multi-tenancy-User1 Scenario (Different Applications with 3 concur-
rent users). 244

3.58 Multi-tenancy-User2 Scenario (Different Applications with 3 concur-
rent users). 244

3.59 Multi-tenancy-User3 Scenario (Different Applications with 3 concur-
rent users). 244

3.60 Conf3: Methodology followed in the evaluation of scientific applica-
tions in multi-tenancy scenario. 245

3.61 Description of NPB multi-tenancy environment with same applica-
tions on 4 concurrent users. 246

3.62 Multi-tenancy-User1 Scenario (Same Application with 4 concurrent
users). 247

3.63 Multi-tenancy-User2 Scenario (Same Application with 4 concurrent
users). 248

3.64 Multi-tenancy-User3 Scenario (Same Application with 4 concurrent
users). 249

3.67 Multi-tenancy-User1 Scenario (Different Applications with 4 concur-
rent users). 249

3.65 Multi-tenancy-User4 Scenario (Same Application with 4 concurrent
users). 250

3.68 Multi-tenancy-User2 Scenario (Different Applications with 4 concur-
rent users). 250

3.66 Description of NPB multi-tenancy environment with different applica-
tions on 4 concurrent users. 251

3.69 Multi-tenancy-User3 Scenario (Different Applications with 4 concur-
rent users). 251

3.70 Multi-tenancy-User4 Scenario (Different Applications with 4 concur-
rent users). 252

3.71 Statistical Process. 254

LIST OF TABLES

1.1 Schedule . 40

1.2 Estimated Costs. 41

2.1 Error I and Error II. 54

2.2 Formulate hypothesis and criteria to test hypothesis. 56

2.3 IaaS tools support for resiliency. 91

2.4 IaaS tools support for flexibility. 94

2.5 Main thread function calls. 106

2.6 Different characteristics of PARSEC benchmarks. 109

2.7 Overview of the eight original NAS benchmarks. 125

2.8 Benchmark Classes of NPB. 142

2.9 Problem sizes and parameters for each of the classes defined in
NPB 3.3. 143

3.1 Comparison and contrast with Existing Studies 1. 168

3.2 Comparison and contrast with Existing Studies 2. 169

3.3 Statistical results in the SPSS analysis of the NPB-OMP and PASERC
suite [KVM X LXC]. 260

3.4 Statistical results in the SPSS analysis of the NPB-OMP suite (LXC
X Native and KVM X Native). 266

3.5 Statistical results in the SPSS analysis of the PARSEC suite (LXC X
Native and KVM X Native). 273

LISTINGS

2.1 MPI implementation in inter-process message exchange (C - C++). Ex-
tracted from Snir (1998). 102

2.2 MPI implementation in inter-process message exchange (Fortran). Ex-
tracted from Snir (1998). 102

2.3 OpenMP implementation of the matrix times vector product in C. Ex-
tracted from Chapman, Jost and Pas (2008). 104

2.4 OpenMP implementation of the matrix times vector product in Fortran.
Extracted from Chapman, Jost and Pas (2008). 105

2.5 Pthread - Thread creation and termination. Extracted from Nichols, But-
tlar and Farrell (1996a). 107

LIST OF ABBREVIATIONS AND ACRONYMS

1-D 1-Dimension

3D 3 Dimension

ADI Alternative Directions Implicit

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

ARM Architecture Review Board

AWD Amazon Web Services

BIND Berkeley Internet Name Domain

BLOBs Binary Large Objects

BoT Bag of Tasks

BT Block Tridiagonal

BT-IO Block Tridiagonal Input/Output

BT-MZ Block Tridiagonal Multi Zone

CFD Computational Fluid Dynamics

CG Conjugate Gradient

CPU Central Processing Unit

CRM Customer Relationship Management

DC Data Cube

DFT Discrete Fourier transform

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

21

DSA Distributed Systems Architecture

DT Data Traffic

ED Embarrassingly Distributed

EP Embarrassingly Parallel

EPT Extended Page Table

ERP Enterprise Resource Planning

FFT Fast Fourier Transform

FIMI Frequent Itemset Mining

FP Frequent Path

FT Fourier Transform

GNU GNU is Not Unix

HC Helical Chain

HDTV High-definition Television

HJM Heath-Jarrow-Morton

HP Hewlett-Packard

HPC High Performance Computing

I/O Input/Output

IaaS Infrastructure as a Service

IPMI Intelligent Plataform Management Interface

IS Integer Sort

IT Information Technology

KSM Kernel Same-page Merging

KVM Kernel-based Virtual Machine

LAN Local Area Network

LARCC Laboratory of Advanced Researches for Cloud Computing

LU Lower-Upper

LU-MZ Lower-Upper Multi Zone

LXC Linux Container

MB Mixed Bag

MC Monte Carlo

22

MG Multi Grid

MPI Message Passing Interface

MZ Multi Zone

NAS NASA Advanced Supercomputing Division

NASA National Aeronautics and Space Administration

NPB NAS Parallel Benchmark

NSD Name Server Daemon

OMP Open Multi-Processing

OS Operational System

PaaS Platform as a service

PC Personal Computer

PDE Partial Differential Equation

POSIX Portable Operating System Interface

PThread POSIX Threads

QA Quality Assurance

REST Representational State Transfer

SA Simulated Annealing

SaaS Software as a Service

SAN Storage Area Network

SETREM Sociedade Educacional Três de Maio

SLA Service Layer Agreement

SP Scalar Pentidiagonal

SPH Smoothed Particle Hydrodynamics

SPI SaaS PaaS and IaaS

SP-MZ Scalar Pentadiagonal Multi Zone

SSH Secure Shell

SSOR Symmetric Successive Over-Relaxation

SPI SaaS PaaS and IaaS

UA Unstructured Adaptive

UI User Interface

VIPS VASIRI Image Processing System

VM Virtual Machine

VP Visualization Pipeline

VPN Virtual Private Network

VT Virtualization Technology

CONTENTS

INTRODUCTION . 29
CHAPTER1: RESEARCH PLAN . 32
1.1 THEME . 32
1.1.1 Theme Delimitation . 32
1.2 PROBLEM . 33
1.3 HYPOTHESES . 34
1.4 VARIABLES . 34
1.5 OBJECTIVES . 34
1.5.1 General Objective . 35
1.5.2 Specific Objectives . 35
1.6 JUSTIFICATION . 35
1.7 METHODOLOGY . 37
1.7.1 Methods . 37
1.7.2 Procedures . 38
1.7.3 Research Techniques . 39
1.8 RESOURCES . 39
1.8.1 Human Resources . 39
1.8.2 Material Resources . 39
1.8.3 Institutional Resources . 39
1.9 SCHEDULE . 40
1.10 ESTIMATED COST . 40
CHAPTER2: LITERATURE REVIEW . 42
2.1 DEFINITION OF TERMS . 42
2.1.1 Benchmarks . 42
2.1.2 Process . 43
2.1.3 Threads . 44
2.1.4 Performance Evaluation . 45
2.1.4.1 Response Time (Latency) . 45

25

2.1.4.2 Overhead . 46
2.1.4.3 Throughput . 46
2.1.4.4 Speedup . 47
2.1.4.5 Efficiency . 47
2.1.4.6 Resource Isolation . 48
2.1.5 Parallel Computing . 49
2.1.6 I/O and CPU Bound . 50
2.2 BACKGROUND . 51
2.2.1 Statistical Hypotheses Testing . 52
2.2.1.1 Hypotheses Test . 52
2.2.1.2 Null Hypotheses . 52
2.2.1.3 Alternative Hypotheses . 53
2.2.1.4 Type I Error . 53
2.2.1.5 Type II Error . 54
2.2.1.6 Significance Test . 54
2.2.1.7 Statistically Non-Significant / Statistically Significant 54
2.2.1.8 Significance Level . 55
2.2.1.9 Z Test . 56
2.2.1.10 T Test . 56
2.2.1.11 Differences between means . 56
2.2.1.12 Standard Deviation . 57
2.2.1.13 Standard Error . 57
2.2.1.14 Analysis of variance - ANOVA . 58
2.2.1.15 Homogeneity of Variance . 59
2.2.2 Test of Normality . 59
2.2.2.1 Test of Kolmogorov-Smirnov / Shapiro Wilk 59
2.2.3 High Performance Computing . 60
2.2.4 Distributed Systems . 61
2.2.4.1 Cluster . 63
2.2.4.2 Node/Workstation . 64
2.2.4.3 Grid Computing . 64
2.2.5 Virtualization . 66
2.2.5.1 Para-Virtualization . 67
2.2.5.2 Container Virtualization . 67
2.2.5.3 Emulated . 68
2.2.6 Hypervisors . 68
2.2.6.1 KVM . 69
2.2.6.2 LXC (Linux Containers) . 74
2.2.7 Cloud Computing . 75
2.2.7.1 Public Cloud . 77
2.2.7.2 Hybrid Cloud . 77

26

2.2.7.3 Private Cloud . 77
2.2.7.4 Community Cloud . 78
2.2.8 Service Models . 78
2.2.8.1 IaaS (Infrastructure as a Service) . 78
2.2.8.2 PaaS (Platform as a Service) . 79
2.2.8.3 SaaS (Sofware as a Service) . 80
2.2.9 Open Source IaaS Tools . 80
2.2.9.1 Apache CloudStack . 81
2.2.9.2 OpenStack . 84
2.2.9.3 OpenNebula . 87
2.2.10 IaaS Tools Comparison . 90
2.2.10.1 Resiliency . 91
2.2.10.2 Flexibility . 93
2.2.11 Multi-Tenancy . 99
2.2.12 Parallel Programming Models . 101
2.2.12.1 MPI - Massage Passing Interface . 102
2.2.12.2 OpenMP - Open Multi-Processing . 103
2.2.12.3 Pthreads - POSIX Threads . 105
2.3 SCIENTIFIC AND ENTERPRISE APPLICATIONS WORKLOAD . . . 108
2.3.1 PARSEC . 108
2.3.1.1 Blackscholes . 111
2.3.1.2 Bodytrack . 111
2.3.1.3 Canneal . 112
2.3.1.4 Dedup . 113
2.3.1.5 Facesim . 114
2.3.1.6 Ferret . 115
2.3.1.7 Fluidanimate . 116
2.3.1.8 Freqmine . 117
2.3.1.9 Raytrace . 119
2.3.1.10 Streamcluster . 119
2.3.1.11 Swaptions . 121
2.3.1.12 Vips . 122
2.3.1.13 X264 . 123
2.3.2 NPB (NAS Parallel Benchmark) . 125
2.3.2.1 Kernel IS: Integer Sort . 126
2.3.2.2 Kernel EP: An Embarrassingly Parallel Benchmark 127
2.3.2.3 Kernel CG: Conjugate Gradiant . 128
2.3.2.4 Kernel MG: Multi Grid . 129
2.3.2.5 Kernel FT: Fast Fourier Transform . 131
2.3.2.6 BT Pseudo-Application: Block Tridiagonal 133
2.3.2.7 SP Pseudo-Application: Scalar Pentadiagonal 134

27

2.3.2.8 LU Pseudo-Application: Lower-Upper 135
2.3.2.9 New benchmarks added to the NPB 136
2.3.2.10 GridNPB . 138
2.3.2.11 Benchmark Rules . 140
2.3.2.12 Benchmark Classes . 142
CHAPTER3: EXPERIMENTS AND RESULTS 144
3.1 LARCC . 144
3.2 RELATED WORKS . 146
3.2.1 Search Methodology . 146
3.2.2 Search process for related work papers 146
3.2.2.1 IEEE . 147
3.2.2.2 Google Scholar . 147
3.2.2.3 ACM . 147
3.2.2.4 Criteria . 148
3.2.2.5 Rules . 148
3.2.3 Search Strings Logic . 148
3.2.4 Presentation of Related Works . 150
3.2.5 Analysis and Comparison of Related Work 168
3.2.6 Related Works Discussion . 170
3.3 EXPERIMENT PLAN . 171
3.3.1 Enterprise Applications . 175
3.3.2 Performance Characterization . 176
3.3.2.1 Core Load . 176
3.3.2.2 Memory Usage . 178
3.3.2.3 Disk I/O . 178
3.3.2.4 Cache Miss . 180
3.3.3 HPC Scenario . 182
3.3.4 Multi-tenancy Scenario . 193
3.3.4.1 Configuration 1 . 193
3.3.4.1.1 Same Applications . 193
3.3.4.1.2 Different Applications . 195
3.3.4.2 Configuration 2 . 198
3.3.4.2.1 Same Applications . 199
3.3.4.2.2 Different Applications . 202
3.3.4.3 Configuration 3 . 208
3.3.4.3.1 Same Applications . 208
3.3.4.3.2 Different Applications . 211
3.4 SCIENTIFIC APPLICATIONS . 216
3.4.1 Performance Characterization . 218
3.4.1.1 Core Load . 218
3.4.1.2 Memory Usage . 219

28

3.4.1.3 Disk I/O . 223
3.4.1.4 Cache Miss . 223
3.4.2 HPC Scenario . 224
3.4.3 Multi-tenancy Scenario . 230
3.4.3.1 Configuration 1 . 230
3.4.3.1.1 Same Applications . 232
3.4.3.1.2 Different Applications . 233
3.4.3.2 Configuration 2 . 238
3.4.3.2.1 Same Applications . 238
3.4.3.2.2 Different Applications . 243
3.4.3.3 Configuration 3 . 245
3.4.3.3.1 Same Applications . 245
3.4.3.3.2 Different Applications . 246
3.5 HYPOTHESIS TESTS . 252
3.5.0.1 Formal Configuration of the Experiments 254
3.5.1 First Hypothesis . 255
3.5.2 Second Hypothesis . 261
3.5.3 Third Hypothesis . 267
CONCLUSION . 274
3.5.4 Hypothesis Validation . 279
3.6 FUTURE WORKS . 280
REFERENCES . 283

INTRODUCTION

Cloud computing is an emergent paradigm which refers to applications and

services being distributed over network, using virtualized resources. They are ac-

cessed by Internet protocols and network standards, which provide on-demand com-

putational resources, (SOSINSKY, 2010). Thus, this infrastructure has become an

attractive environment to scientific and enterprise applications, offering high flexibility

in resource allocations and elasticity, at a relatively low cost (STONEBRAKER; PAVLO;

TAFT; BRODIE, 2014).

Otherwise, as appointed by Iosup et al. (2011), scientific and enterprise work-

loads often require High-Performance Computing (HPC) capabilities, which offer a bet-

ter condition for hosting such applications. Consequently, migrating these applications

that are traditionally developed to the HPC environment to the cloud environment us-

ing virtualization technologies may cause performance degradation. Therefore, porting

applications to the cloud without compromising performance is one of the major chal-

lenges of cloud computing.

Several studies about IaaS cloud tools were performed at the Laboratory of

Advanced Researches on Cloud Computing (LARCC)1. The study of Maron (2014),

Maron et al. (2014) and Maron, Griebler and Schepke (2014), performed an evalu-

1http://larcc.setrem.com.br

30

ation and comparison between parallel and scientific applications using OpenStack2

and OpenNebula3 cloud tools. Thus, these IaaS tools have been deployed and bench-

marked to simulate the scientific applications’ behavior in the native and cloud en-

vironments, allowing comparison among the tools. Their main contribution was the

methodology to evaluate IaaS tools factor through the NAS Parallel Benchmark and

intensive workloads over specific properties in the environment such as network, stor-

age, memory, and processing (MARON; GRIEBLER; SCHEPKE; FERNANDES, 2016;

VOGEL; GRIEBLER; MARON; SCHEPKE; FERNANDES, 2016). Therefore, the previ-

ous research only considered the use of a single virtualization technology (KVM) and

high-performance computing environment (one instance per node).

On the other hand, the survey performed in Vogel (2015) and Vogel et al.

(2016) had the goal of evaluating these IaaS tools, concerning the features and support

for robustness (flexibility and resilience). Also, a survey state of the art for performance

on a cloud was conducted to highlight cloud’s challenges and potential solutions for

reducing its performance overhead. This survey demonstrated that the open source

cloud IaaS solutions can provide high robustness levels and are suitable for enterprise

applications. Moreover, through the results of the evaluation, it has been determined

that CloudStack is the most flexible IaaS tool as well as OpenStack is the most resilient.

This research was also developed in the LARCC and contributed to the pre-

vious work. The main difference is that it used the workloads of benchmark suites to

simulate the performance of real-world applications. Moreover, different deployments

will be evaluated in the IaaS cloud and native environment. The expected contribution

is a performance-aware characterization to deploy a cloud environment for scientific

and enterprise workloads.

The thesis is organized in 3 chapters. Chapter 1 presents topics about the

project, such as the theme, problem, objectives and the methodology. The next one

2https://www.openstack.org/
3https://opennebula.org/

31

(Chapter 2) introduces the Literature Review, which describes the main subjects re-

lated to the theme (cloud computing, grids, cluster). Finally, Chapter 3 shows the

results of the study, focusing on the exposure of tool characterization.

CHAPTER1: RESEARCH PLAN

This chapter introduces and contextualizes the methodology used in the re-

search.

1.1 THEME

Characterizing performance on private IaaS clouds for scientific and enterprise

application workloads.

1.1.1 Theme Delimitation

This research intends to investigate performance issues and bottlenecks in

private IaaS clouds. The goal is to characterize performance-aware scenarios by test-

ing different virtualization technologies, cloud management tools, multi-tenancy, work-

loads from scientific and enterprise domains and deployment optimizations. Cloud

deployments will be configured using private IaaS management tools (CloudStack,

OpenStack, and OpenNebula) with KVM and LXC-based intances, which were cho-

sen based on previous studies presented by Vogel et al. (2017), Vogel et al. (2016)

and Adriano Vogel Carlos A. F. Maron (2015). To represent the real world applications

on Scientific and Enterprise domains, workloads will be used provided by representa-

tive benchmark suites (i.e., NAS-NPB and PARSEC). The performance result should

provide enough empirical data to characterize the best deployment scenarios for each

33

workloads.

The project is authored by Anderson Mattheus Maliszewski and Willian Baum

as a requirement for the final undergraduate thesis in the Computer Network course,

which is advised by the Ph.D. Dalvan Jair Griebler at Sociedade Educacional Três de

Maio (SETREM). The period of the research is between October of 2016 and July of

2017.

1.2 PROBLEM

As emphasized by Buyya, Vecchiola and Selvi (2013), the paradigm of cloud

computing is changing the way how services are delivered to costumers and end users,

such as water, electricity, gas, and telephony (on-demand). In addition, there is a

growing demand for accessing information anywhere and anytime. Based on these

needs, cloud computing is an emerging technology to provide a new way to organize

and use the hardware resources through virtualization, which allows the provision of

services on-demand (BUYYA; BROBERG; GOSCINSKI, 2010).

Currently, there are three major factors that make most organizations migrate

their solutions to the cloud, they are: Costs; deployment; and organizational changes.

This can be done because, cloud computing focuses on maximizing the effectiveness

of shared resources (BADGER; CHAPMAN; PATT-CORNER; VOAS, 2012). However,

virtualized environments may experience performance degradations due to the over-

head of virtualization software (ROSSO, 2015). There is a risk involved in deploying

the cloud environment as well, impacting considerably on the application performance.

Therefore, scientific and enterprise workloads must be characterized in private cloud

environments to identify the best deployment scenario. This will be useful to stakehold-

ers to improve their environment according to the type of application and requirements,

avoiding a significant performance degradation and providing efficient resource usage.

34

Finally, how should the cloud be deployed for enterprise and scientific work-

loads to achieve the best performance?

1.3 HYPOTHESES

1. The performance characteristics of scientific and enterprise workloads are statis-

tically different among deployed cloud scenarios.

2. The performance characteristics of the scientific workloads on the deployed cloud

scenarios are statistically different with respect to the native computing environ-

ment.

3. The performance characteristics of the enterprise workloads on the deployed

cloud scenarios are statistically different with respect to the native computing

environment.

1.4 VARIABLES

• Performance

• Cloud Platform

• Virtualization Technologies

• Scientific and Enterprise Applications

1.5 OBJECTIVES

This section presents the study goals.

35

1.5.1 General Objective

The goal of the research is to investigate performance issues and bottlenecks

in private IaaS clouds for scientific and enterprise workloads, using different virtualiza-

tion technologies, cloud management tools, deployment optimizations and important

application features (for instance, scientific workloads that target distributed and shared

memory architectures as well as enterprise workloads, which represents concurrency

and client-server environments).

1.5.2 Specific Objectives

• Review the literature of the following subjects: Private IaaS; Virtualization tech-

nologies; Cloud management tools; Deployments.

• Define a set of benchmark suites that represents scientific and enterprise appli-

cation workloads.

• Create and deploy a set of deployment scenarios.

• Run the defined scientific and enterprise workloads.

• Compare the results of the benchmarks.

• Characterize the best deployment scenarios.

1.6 JUSTIFICATION

The fast growth in demand for computing power, along with the new possibili-

ties brought by the Web 2.0, open their way to the full adoption of the cloud computing

(CHANG, 2015). The utilization of the cloud computing, whether public, private or hy-

brid, can work with green IT, as long as it has proven to be effective and financially

sustainable, as IT costs in staff, hardware, and equipments decreases (SOSINSKY,

2010).

36

The cloud computing utilizes a stack architecture, whereas the virtualization

stays directly above hardware resources, offering support to the high level layers, such

as IaaS, PaaS and SaaS (CHANG; WALTERS; WILLS, 2013).

However, although the technologies that are used by cloud computing have

been improved over the past three decades (TANENBAUM; AUSTIN, 2013), the ab-

straction layer provided by hypervisors, comes with a cost, performance. In compar-

ison to the native environment, they do not have the same abstraction layer as cloud

computing.

One of the technical risks involved in utilization of cloud is whether the per-

formance will be worse than expected for the native en. Therefore, the use of rep-

resentative benchmark tools to simulate workloads of real world applications will help

the service provider to choose a better option according to their needs, allowing them

to compare the performance of the cloud environment before the decision making.

Furthermore, it is necessary to use scientific methods in order to characterize and

compare the performance for each deployment.

The combination of application features, drivers and virtualization technologies

in the OpenStack, CloudStack and OpenNebula deployments methods, provides a spe-

cific environment for each technology, resulting in a different performance when utilizes

scientific and enterprise workloads. However, the benefits and risks should be clear

to the organization’s strategic goals. A survey on this area will guide the stakeholders

needs, allowing them to provide better planing to deploy the cloud in their production

environment, and provides the ability to choose the best ways to deploy for specific

use.

This research comes from the need for a clear understanding of questions that

are little discussed in the literature and allow to aggregate knowledge, in order to pro-

vide the frameworks in cloud computing area. When benchmarks of real applications

37

are performed, and makes a comparison among them, it is possible to find the best

environment for an application type. Making it possible to the stakeholder, take full

advantage of the hardware resources, accomplish the service layer agreement (SLA),

and bring the best of cloud computing.

1.7 METHODOLOGY

This section describes the methods that will be used to reach and treat the

results of the research.

1.7.1 Methods

In this research, it will be used the quantitative method because the goal is to

analyse the benchmarks results statistically. To achieve this goal, a study method will

be used to highlight the performance to each kind of workload and each cloud platform.

In addition, a deductive method will be used because of the experimental research.

Before presenting how the hypotheses are evaluated, observe that their val-

idation are specifically applied to the achieved results and specific scenarios tested.

Consequently, the experiment plan and methodology will limit the achievement of each

one of the hypotheses. The general assumption should be avoided as performance ex-

periments are always specifically designed to each particular computing environment

targeted. Therefore, each hypothesis and its way to validate are presented on the

following topics:

1. The performance characteristics of the scientific and enterprise workloads

are statistically different among deployed cloud scenarios. For instance, it

is possible to have a deployed cloud with a KVM-based environment and another

one with an LXC-based environment. The hypothesis requires deploying at least

two cloud environment types that can be using the same or different cloud plat-

38

form and choose representative benchmarks that mimic/simulate scientific and

enterprise workload. Then, the basic performance metrics (e.g., execution time)

defined in the experiments later will be measured when running the benchmarks.

This is because each kind of workload has its own requirements. The statistic

significance will be analyzed by using the appropriate statistical hypothesis test,

which will be known only after the tests were run and analyzed.

2. The performance characteristics of the scientific workloads on the deployed

cloud scenarios are statistically different with respect to the native comput-

ing environment. Supposing that the cloud scenarios were already deployed for

the second hypothesis, it will be necessary only to run the same benchmarks

in a equivalent native computing environment, measuring the same basic per-

formance metrics. After, the statistic significance will be measured by using the

appropriate statistical hypothesis test and compare both native and cloud scenar-

ios running scientific workloads.

3. The performance characteristics of the enterprise workloads on the de-

ployed cloud scenarios are statistically different with respect to the native

computing environment. Supposing that the cloud scenarios were already de-

ployed for the second hypothesis, it will be necessary only to run the same bench-

marks in a equivalent native computing environment, measuring the same basic

performance metrics. After, the statistic significance will be measured by using

the appropriate statistical hypothesis test and compare both native and cloud

scenarios running enterprise workloads.

1.7.2 Procedures

Statistical research: This procedure will be used because it is needed to show

the significant differences between the benchmark results.

Exploratory research: It will be used because it is necessary to review the

39

literature in searching of solutions for cloud and virtualization already explored by other

researchers.

1.7.3 Research Techniques

Experimental Technique: It will be used because the results of this research

are not known, and it needed to be conducted by experiments. Thus, it will be con-

ducted creating the specific scenario to simulate with benchmarks tests.

1.8 RESOURCES

This section describes the resources that will be used during the development

of the research.

1.8.1 Human Resources

The human resources are the frequent contact with the advisor, teachers and

fellow students.

1.8.2 Material Resources

The material resources are the books, articles, equipments, papers, digital

libraries, computers and IT devices.

1.8.3 Institutional Resources

The institutional resources used are the library, IT labs, network lab, coordina-

tion of the Computer Networks Technology course and the LARCC infrastructure.

40

1.9 SCHEDULE

The Table 1.1 shows the proposed activities and the period they were per-

formed during the research. The table is divided in columns, counting the activities

and sh the months in which they will be executed. The gray cells show the expected

period settled for each activity and the cells with the character "X" representing the

objectives already achieved.

1.10 ESTIMATED COST

The Table 1.2 shows the financial resources needed to complete the project.

The first column describes the activity, the second describes the amount of this activ-

ities, the third describes the unit value in national currency and the fourth shows the

sum of the amounts in national currency.

2016 2017
Activity

Oct Nov Dec Jan Feb Mar Apr May Jun

Write a research project X X X

Deliver the research project

Study private IaaS cloud tools X

Study of related works X

Present and deliver the research progress X

Study of benchmarks X X X

Study of scientif and enterprise workloads X X X X

Perform the benchamark tests X X X X

Analysis and validation of the hypothesis X

Write the final thesis X X

Present the final thesis X

Source: Baum, Maliszewski, Griebler, 2017.

Table 1.1: Schedule

41

Activity Amount Unit Value Total Value

Number of printouts 1500 R$ 0.25 R$ 375.00

Spiral binding 3 R$ 5.00 R$ 15.00

Hardcover binding 1 R$ 70.00 R$ 70.00

Gasoline 1000 R$ 3.89 R$ 3.890.00

Writing and publish articles 3 R$ 150.00 R$ 450.00

English correction 3 R$ 120.00 R$ 360.00

Openstack course 1 R$ 1.500.00 R$ 1.500.00

Work hours 1600 R$ 60.00 R$ 96.000.00

Total R$ 102.660.00

Source: Baum, Maliszewski, Griebler, 2017.

Table 1.2: Estimated Costs.

CHAPTER2: LITERATURE REVIEW

This chapter defines the terms with their characteristics and topics, following

the literature.

2.1 DEFINITION OF TERMS

This section defines the terms related to the research. It explains the main

characteristics and details of the topics.

2.1.1 Benchmarks

As the number of computing architectures has increased, the diversity of plat-

forms makes it difficult to predict the behavior of an application in certain architectures.

The computing community faced the problem, by using a practical approach to pro-

vide mathematically the comparison of computational performance using benchmarks

(GUSTAFSON; SNELL, 1995).

Benchmark is essentially an algorithmic structure used on computational sys-

tem with the characteristics of a real-world application, allowing to mimic the behavior

in those system. Thus, as appointed by Zhu (2014), benchmark is a test method to

evaluate and identify the performance of the computer characteristic. Therefore, the

benchmarks results can be compared across different platforms (BUYYA; BROBERG;

43

GOSCINSKI, 2010). It allows to measure scientifically the performance implementa-

tion, helping the engineering to quantify and improve standards.

2.1.2 Process

A process is essentially a container that stores all the information necessary to

run a program. It is associated with each process is its address space, a list of memory

locations, ranging from 0 to a maximum, which the process can read and write. Thus,

the address space contains the executable program, the program data, and its stack.

Also associated with each process is a set of features, usually including registers, a list

of open files, pending alarms, related process lists, and all other information needed to

run a program (TANENBAUM; BOS, 2014).

The authors Silberschatz, Galvin and Gagne (2012) emphasized, that a pro-

gram by itself is not a process. A Program is a passive entity, such as a file containing

a list of instructions stored on the disk (executable files). Thus, in contrast, a process

is an active entity, with a program counter specifying the next statement to execute and

a set of associated resources. It means that a traditional process has a single thread

of control.

Also, as emphasized by Tanenbaum and Bos (2014), the operating system pe-

riodically interrupts a running process and starts another because the former would

have exceeded its CPU sharing time. When a process is temporarily suspended this

way, it should be restarted later, from exactly the same point it was when it was in-

terrupted. This means that all process-related information must be explicitly saved

somewhere during the suspension.

Moreover, on many operating systems, all information related to a process

other than the content of its own address space is stored in an operating system table

called a process table, which is an arrangement of structures, one for each existing

44

process.

2.1.3 Threads

A Thread is basically a process inside another process. A process typically

has one address space and a single control flow. Often there is a situation where it is

desirable to have multiple control flows in the same address space, running almost in

parallel, as if they were separate processes. These control flows are known as Threads

(TANENBAUM; BOS, 2014).

In addition, as emphasized by the same author, a thread has a program counter

that controls which statement is going to be executed. It has registers, which contain

their current working variables. It has a stack, which contains the execution history,

with a block for each called function, but for which there has not yet been a return.

However, although a thread must be run in some process, the thread and its

process have different concepts. Processes are used to group resources and threads

are the entities programmed to run on the CPU. What is enhanced by Threads in

the process model is that it allows multiple executions to occur in the same process

environment quite independently of each other. In Figure 2.1(a), a single process

with three control threads is shown. In contrast, in the Figure 2.1(b), three traditional

processes are shown. Each process has its own address space and a single control

thread.

Although in both cases there are three threads, in Figure 2.1(a) all three share

the same address space, while in Figure 2.1(b) each of them operates in a different

address space.

45

(a) (b)
Source: Extracted from Tanenbaum and Bos (2014).

Figure 2.1: A process with three threads (a). Three processes, each one with a thread
(b).

2.1.4 Performance Evaluation

One of the main goals of computing, is the potential to provide to their owners

the benefits of economy allied to performance efficiency, so this will impact on the over-

all cost of the business, and on the production environment (IOSUP; OSTERMANN;

YIGITBASI; PRODAN; FAHRINGER; EPEMA, 2011). However, in order to quantify

the performance among the diverse computational architectures, we need to evaluate

some key features of the system. They are described below.

2.1.4.1 Response Time (Latency)

One of the characteristics of computer devices is that they are constantly

generating and transferring data between them (NEUHAUS; FEINBUBE; JANUSZ;

POLZE, 2015). Thus, an important way to evaluate the performance is to measure

the latency.

As defined by Badger et al. (2012) and Marinescu (2013), latency is the elapsed

time (delay) from the instant an operation is initiated until it is effected is sensed. Thus,

the result of a low latency environment will have a positive impact on the overall re-

sponse time. This can be represented by the formula:

46

Latency =
TransferredDate

T ime
(2.1)

2.1.4.2 Overhead

Overhead is a common issue of virtual machines, because a new layer is in-

troduced between the hardware resources and the operating system. In addition, as

mentioned by Xu, Liu and Vasilakos (2014), despite resource isolation techniques,

resources shared by the virtual machines, such as CPU cache and I/O bandwidth,

introduces an overhead. So, communication overhead is the time needed for proces-

sors to communicate and possibly exchange data while executing tasks (EL-REWINI;

ABD-EL-BARR, 2005).

Moreover, it is an activity that do not contribute with the execution itself, but the

time to instructions becomes actions. Thus, as emphasized by Janssen and Nielsen

(2008), highs rates of communication overhead causes degrading performance.

2.1.4.3 Throughput

Throughput is the maximum bandwidth rate achieved in a computer environ-

ment in a given data stream. As higher the throughput is, higher is the performance.

However, as emphasized by Blokland, Mengerink and Pol (2013), an insufficient through-

put, can produce a performance risk to the cloud environment, creating a bottleneck

due to the lack of capacity, increasing the latency.

As emphasized by Chandrasekaran (2014), the ideal throughput should coexist

in a cloud environment and obtain from the system the resources that best match the

application requirements. Therefore, it is appointed by Baer (2010), as a metric that

represents the amount of work per unit of time:

47

Throughput =
Instructions(Number)

Latency
(2.2)

2.1.4.4 Speedup

Speedup is the performance gain from original task compared to the improved

task. Thus, the speedup measures the effectiveness of parallelization (MARINESCU,

2013).

In other words, as initially presented by Amdahl’s Law (AMDAHL, 1967), speedup

shows how a task will run faster by using the computer with enhancement as opposed

to the original computer.

The theoretical speedup equation in latency of a certain task is represented by

Hennessy and Patterson (2012) of the following formula:

Speedup =
Performance(Improved)

Performance(Normal)
(2.3)

2.1.4.5 Efficiency

As emphasized by Baer (2010), a smaller execution run-time implies better

performance, improving better resource usage. Thus, efficiency is an important metric

that reveal the resources utilization, calculating the speedup (performance improve-

ment obtained by adding resources) per number of processors (n), the result will be

the efficiency.

Efficiency =
Speedup

Number(Processors)
(2.4)

48

In addition, El-Rewini and Abd-El-Barr (2005) define the efficiency as the ratio

between the speedup factor and the number of processors (n). Is proposed in the

parallel computation with serial sections mode, to add the communication overhead to

the equation, and a fraction of serial computation (f), allowing to compare them.

ξ(No Communication Overhead) =
1

1 + (n− 1)f
(2.5)

ξ(With Communication Overhead) =
1

f(n− 1) + 1 + n(tc + ts)
(2.6)

2.1.4.6 Resource Isolation

The cloud computing environment provides resource virtualization by sharing a

common hardware between instances. Sakr and Gaber (2014) appointed that resource

isolation is managed by the operating system in order to efficiently control and distribute

the tasks and system calls.

However, one of the key challenges is to provide an efficient use of these re-

sources, avoiding the overhead. As mentioned by Barker and Shenoy (2010), multiple

virtual machines running disparate applications may share the same physical server,

thus inducing penalties among processes, especially for running latency-sensitive ap-

plications. Therefore, low level of resource isolation will cause considerable overhead

between systems (BESERRA; MORENO; ENDO; BARRETO; SADOK; FERNANDES,

2015a), hence a low performance.

49

2.1.5 Parallel Computing

Parallel computing is a combination of multiple processing elements in a single

large system. It is highly used to solve huge problems and perform different tasks

in the shortest possible time. According to Mattson, Sanders and Massingill (2004),

parallel computing uses the main key to exploit concurrency between problems. It

decomposes the problems into sub-problems and then executes them at the same

time. In the Figure 2.2, a description of a traditional serial computation is shown, which

is the opposite of parallel computing. The serial way breaks the problem into a discrete

series of instructions, and then the instructions are executed by a master processor.

Source: Extracted from Silberschatz, Galvin and Gagne (2012).

Figure 2.2: Serial problem execution.

Unlike the serial, parallel computing is the simultaneous use of multiple com-

pute resources to solve a computational problem (2.3). It first decomposes a main

problem into distinct parts that can be solved concurrency. Then, each part is broken

into instructions and after that the instructions of each part execute simultaneously on

different processors (BARNEY, 2012).

The author Barney (2012) justifies the use of parallel computing for the follow-

ing reasons:

• Save time and money: The greater use of resources in a task will shorten its time

50

Source: Extracted from Barney (2012).

Figure 2.3: Parallel problem execution.

to completion, potentially cost-saving.

• Solve large and complex problems: Many problems could be so large and com-

plex to solve that it becomes impossible to solve that on a single computer. Gen-

erally the biggest limitation is related to the amount of memory available, which

does not happen in a parallel environment.

• Provide Concurrency: In a single computer environment one task could be solved

at a time. In a parallel environment, many tasks could be solved simultaneously.

• Take advantage of non-local resources: Allows to use resources on a wide area

network, or even the Internet.

2.1.6 I/O and CPU Bound

According to Tanenbaum and Bos (2014), some processes spend most of their

time computing, while others spend most of their time waiting for I/O. The first are called

bounded by the CPU (compute-bound or CPU-bound); The latter are those limited by

I/O (I/O-bound). Processes limited by the CPU usually have long CPU bursts and

sporadic I/O waits; Whereas I/O-bound processes have small peaks in CPU usage

51

and frequent I/O waits. The Figure 2.4 shows the difference between the I/O and CPU

bound.

Source: Extracted from Tanenbaum and Bos (2014).

Figure 2.4: I/O and CPU bound comparison.

In addition, the same author emphasized that I/O-oriented processes are so

called because between one request and another for I/O, they do not perform much

computation, not because they have especially long I/O requests. The time to read a

disk block is always the same regardless of the time it takes to process the data that

arrives later. As CPUs become faster, processes tend to be more limited by I/O. This

effect occurs because CPUs are getting much faster than disks. The basic idea is that

if an I/O-oriented process wants to run, that opportunity should be quickly given to it as

it will execute its disk requests, keeping the disk busy.

2.2 BACKGROUND

Cloud computing is an emerging paradigm that provides computing resources

through service levels, (VOGEL; MARON; GRIEBLER; SCHEPKE, 2016). Therefore,

it is built on several technologies and models. In this approach, to understand the de-

velopment of this work, it is necessary to contextualize these technologies and related

techniques, presented in the next sections.

52

2.2.1 Statistical Hypotheses Testing

In approaching a scientific research, it is necessary to prove or not the hy-

potheses created on the obtained results. Following this line, statistical methods are

used to analyze and compare all data. Therefore, the following sections will describe

the items related to the statistical hypothesis test.

2.2.1.1 Hypotheses Test

According the authors Ron Larson (2010) a hypothesis test is a process that

uses statistical samples to test an affirmation about a value of a population parameter.

In addition Freund (2009) argues that a statistical hypothesis is a statement or

a conjugation about a parameter (or parameters), about a population (or populations);

It may also refer to the type or nature of the population.

To develop the processes of testing statistical hypotheses, one must first know

what to expect when a hypothesis is true, and it is for this reason that the hypothesis is

often formulated opposite to what is expected to be proved.

Once the hypothesis has been made that the affirmations of this are equivalent,

we enter the null hypothesis.

2.2.1.2 Null Hypotheses

According to Field (2013), a null hypothesis1 usually indicates that an element

is missing. It is denoted by H0. A null hypothesis is used because it is impossible

to prove the experimental hypothesis using statistics, but a null affirmation can be re-

jected.
1The term "null hypothesis" was introduced by Ronald Fischer (FISHER, 1925). If the assertion in

the null hypothesis is not true, then the alternative hypothesis must be true.

53

In addition Ron Larson (2010) states that a null hypothesis H0 is a statistical

hypothesis that contains an equality affirmation, such as ≤, = or ≥.

2.2.1.3 Alternative Hypotheses

According to Field (2013), this type is the opposite of the null hypothesis, al-

ways being a present effect. It is denoted by H1. In addition, the author Freund (2009)

mentioned that the alternative hypothesis should always be formulated together with

the null hypothesis.

Another author, Ron Larson (2010) defines the alternative hypothesis as a

complement to the null hypothesis. It is an affirmation that must be true if the H0 is false

and contain a strict inequality affirmation, such as >, neq or <. Taking an example,

one can easily understand the differences between these two types of hypotheses

generated bellow:

• Null Hypothesis: A 5% increase in the price of a particular product will not

adversely affect sales.

• Alternative Hypothesis: A 5% increase in the price of a particular product will

affect sales.

2.2.1.4 Type I Error

According to Field (2009), a type I error occurs when one believes that there

is a genuine "effect" in the population, when in fact it does not exist. Following Fisher

criteria, the probability of occurrence of this error is 0.05 (5%). This error can also be

named as α. Thus, if a given data is replicated 100 times, it can be expected that on

five occasions, the statistical test suggests that there is an "effect" on the population,

even when it does not exist.

54

2.2.1.5 Type II Error

The opposite of type I error, is known as type II error, and its occurrence repre-

sentation is given by β. According to the authors Field (2009), this error occurs when

it is believed that there is no "effect" on a population when it actually exists. Typically,

this error occurs when you have obtained a small statistic test. In the Table 2.1, it

summarized the typical situation of both errors.

Accept H0 Reject H0

H0 is true Right decision Type I Error
H0 is false Type II Error Right decision

Source: Extracted from Freund (2009).

Table 2.1: Error I and Error II.

If the null hypothesis H0 is true and accepted, or false and rejected, the deci-

sion is correct in both cases. In addition, if it is true and rejected, or false and accepted,

the decision is wrong in both cases. In practical, the first error is known as Type I error

and the second is Type II error (FREUND, 2009).

2.2.1.6 Significance Test

According to Freund (2009) the main role of statistical analysis is to establish

if the results obtained are statistically significant according to predetermined limits. In

the next sessions, the items related to the significance of the results will be described.

2.2.1.7 Statistically Non-Significant / Statistically Significant

According to Freund (2009) when the difference between what is expected and

what is observed is so small that it is reasonably attributable to chance, a result is sta-

tistically non-significant or not significant. On the other hand, if the difference between

what is expected under the null hypothesis and what is observed in a sampling is too

55

large for it to be reasonably inaccurate, the null hypothesis is rejected and therefore

have a statistically significant result.

It is important to note that these expressions are always employed in view of

previously chosen ’levels of significance’.

2.2.1.8 Significance Level

According to Field (2009) it is the limit that is taken as the basis to affirm that

a certain deviation is due to the chance or not. The levels P = 0.05 and P = 0.01, i.e.,

5% and 1% respectively, are accepted as statistically significant. From a conventional-

ized level of significance (α) deviations are due to the law of chance and the result is

considered non-significant. Thus, if α = 5%, is represented in the example image 2.5:

Figure 2.5: Significance Level Example.

Source: Extracted from Field (2009).

In practice, the 5% error probability limit is considered to be satisfactory, differ-

ences that have a probability above this limit are not significant.

The level of significance must be established before the experiment is realized

and corresponds to the risk of rejecting a true hypothesis or accepting a hypothesis.

The significance of a result is also called the p− value.

56

2.2.1.9 Z Test

Used when distributed Sigma population is known. Z is a random value that

has a standard distribution population and can be represented by the formula 2.7.

Thus, according to Freund (2009) by using standard units, it can formulate hypothesis

and criteria to test the hypothesis as represented in the Table 2.2.

z =
x̄− µ0

σ/
√
n

(2.7)

Alternative Hypothesis Reject the null hypothesis if Accept the null hypothesis
or reserve the judgment

µ < µ0 z ≤ −za z > −zσ
µ > µ0 z ≥ za z < zσ
µ 6≡ µ0 z ≤ −zσ/2orz ≥ zσ/2 −zσ/2 < z < zσ/2

Source: Extracted from Freund (2009).

Table 2.2: Formulate hypothesis and criteria to test hypothesis.

2.2.1.10 T Test

It is very similar to the Z test, but is most often used when the population of

standard deviation is unknown and can be represented by the formula 2.8. However,

according to Freund (2009), to perform this test it is necessary to estimate where the

population samples comes from to correctly represent the normal distribution.

t =
x̄− µ0

s/
√
n

(2.8)

2.2.1.11 Differences between means

According to Freund (2009) there are many problems in deciding whether

an observed difference between two samples means can be attributed to chance or

57

whether it is an indication of the fact that the two samples come from populations with

different means. Two processes used to test this difference are the standard error and

the standard deviation described in the following sections.

2.2.1.12 Standard Deviation

According to Field (2009) the standard deviation aims to demonstrate the regu-

larity of a set of data in order to indicate the degree of oscillation of these in comparison

with the average of the values of the set.

To determine the standard deviation, it is first necessary to calculate the mean,

made by the formula in the equation 2.9, where "µ" is the mean, "Σ X" is the sum of

the values and X represents each of the numbers of the sum, finally "N" indicates the

total size of the population.

µ =
ΣX

N
(2.9)

The standard deviation is calculated with the formula in the equation 2.10,

where "σ" is the standard deviation representation, "Σ" is the sum, "X" is the sum

number, "µ" is the mean and finally the "N" is the total number of the population..

σ =

√
(Σ(X − µ)2

N
(2.10)

2.2.1.13 Standard Error

According to Field (2009) the standard error (SE) estimates the variability

among the means of the sample that would be obtained if several samples of the same

58

population were collected.

In addition, the authors Ron Larson (2010) emphasized that the standard error

is used to determine the accuracy with which the sample mean estimates the popu-

lation mean. Lower values of the standard error of the mean indicate more accurate

estimates of the population mean. In the equation 2.11, the formula for calculating the

standard error is displayed. The Greek letter "σ" is the standard deviation and the "n"

is the sample size.

SE =
σ√
n

(2.11)

2.2.1.14 Analysis of variance - ANOVA

According to Field (2009) a ttest tests the hypothesis with two samples that

have the same mean. Similarly, the ANOVA determines whether two or more means

are equal by testing the null hypothesis. An ANOVA produces a F statistic or F ratio,

which is similar to the t statistic, in that it compares the amount of systematic variance

in the data with the amount of non-systematic variance. In other words, F is the model’s

reason for its error (FIELD, 2009).

ANOVA is an omnibus test, which means that it tests a global experimental

effect, although it says whether experimental manipulation was generally successful,

it does not provide specific information about which groups were affected. Assuming

that one experiment was conducted with three different groups, the ratio F says that

the means of these three samples are not the same. However, there are several ways

in which the means may differ. The first possibility is that the three sample means are

significantly different. A second possibility is that the means of groups 1 and 2 are the

same, but group 3 has a significantly different mean. Another possibility is that groups

2 and 3 have similar means, but group 1 has a significantly different mean. Finally,

59

groups 1 and 3 may have similar means, but group 2 has a significantly different mean.

So in one experiment, the F ratio only tells us that experimental manipulation has had

some effect, but it does not specifically tell us what the effect was (FIELD, 2009).

2.2.1.15 Homogeneity of Variance

According to Field (2009) homogeneity of variance means that as it moves

between levels of one variable, the variance of the other should not change. If data

groups were collected, this means that the variance of the output variable or variable

should be the same in each of these groups. If continuous data were collected, this

assumption means that the variance of one variable must be stable at all levels of the

other variable.

2.2.2 Test of Normality

According to Field (2009) normality tests are used to verify if the probability

distribution associated with a dataset can be approximated by the normal distribution.

In the next sections is described the Kolmogorov-Smirnov and Shapiro Wilk tests.

2.2.2.1 Test of Kolmogorov-Smirnov / Shapiro Wilk

According to Field (2009), both tests compare "scores" from a sample to a

normal distribution model of the same mean and variance of the values found in the

sample. If the test is non-significant (p> 0.05), it reports that the sample data does

not differ significantly from a normal distribution (that is, they may be normal). On the

other hand, if the test is significant (p <0.05), the distribution in question is significantly

different from a normal distribution (that is, it is non-normal).

However, both tests have limitations because with large samples it is very easy

to obtain significant values from small deviations from normality and, therefore, a sig-

60

nificant result does not necessarily inform us if the deviation from normality is sufficient

to undermine the statistical procedures that will be applied to the data.

2.2.3 High Performance Computing

High Performance Computing (HPC) is characterized to be a massive number

of computers installed on facilities (clusters and supercomputers) for performing large

scale experiments (VECCHIOLA; PANDEY; BUYYA, 2009).

HPC focuses on performance, and it is used in many scientific and enterprise

fields, such as airplane projects, drug development, global climatology, military appli-

cations, financial analysis, space research and other applications that requires high

degrees of accuracy. In addition, as defined by Yang and Guo (2005), supercomput-

ers from HPC domain are also known to use state-of-the-art technology, providing the

highest levels of performance for certain applications, but also with an expansive cost.

According to Cisco (2008) the HPC has three main types in the enterprise

environment, which are:

• Tightly Coupled: Applications run on all compute nodes simultaneously in paral-

lel, having one master node to determinate the input processing for each compute

node.

• Distributed I/O processing: Computing is balanced between master nodes,

then divided among the compute nodes for parallel processing. It is commonly

used in search engines.

• Loosely Coupled: The middleware controls the file processing by dividing and

distributing through the compute pool to be computed in parallel. The processed

components are then reorganized and stored.

61

The HPC are the main tool for running scientific and enterprise applications

because the massive performance that can achieve by its given hardware. Thus, the

applications used on HPC domain requires very high performance cores and floating-

point processors, scalable memory, and fast I/O (GOLDWORM; SKAMAROCK, 2007).

However, despite its efficiency, alternatives such as workstation clusters and

cloud computing, can offer a relatively good performance at low cost, and it is easy to

scale, becoming an alternative to HPC (JUVE; DEELMAN; VAHI; MEHTA; BERRIMAN;

BERMAN; MAECHLING, 2009).

2.2.4 Distributed Systems

Distributed system has emerged as one of the key research areas driving in-

novations in business, engineering, and science, (CHANG, 2015). It was characterized

as a set of independent computers which are presented to the users as a single and

consistent system (TANENBAUM; STEEN, 2007).

Also, Tanenbaum and Steen (2007) emphasize that to achieve homogeneity

from the users point of view, the distributed system has some important aspects that

must be considered. The first, consists of the independent components (computers).

The second refers to the users, being people or programs who think they are working

with an individual system. The way it will be established this collaboration is the main

point of distributed systems.

In cloud computing environment, the distributed system plays an important role

according to Buyya et al. (2009). This is because one of the key feature of the cloud is

a system that consists in a collection of interconnected computers that are dynamically

provisioned, presented as one or more unified computing resources and designed to

maintain availability.

62

Source: Extracted from Tanenbaum and Steen (2007).

Figure 2.6: Distributed System example.

In the Figure 2.6 an example of a distributed system is presented. It shows

four computers and three applications. It can be seen that application B is distributed

between computer 2 and 3.

According to Marinescu (2013), the distributed system coordinates its activities

by a software called middleware, which should support a set of characteristics that

composes a distributed system, they are:

• Access transparency: Identical operations to access local or remote informa-

tion.

• Location transparency: The information is accessed without the knowledge of

their location.

• Concurrency transparency: Processes are executed simultaneously by sharing

information without interference between them.

• Replication transparency: Multiples instances can replicate resources among

them without user knowledge.

• Failure transparency: continuously available, even through a component failure.

• Migration transparency: The information object can be moved in real time with-

out affect the access.

63

• Performance transparency: The performance can be determined by the quality

of service requirements.

• Scaling transparency: System and applications can scale without changing the

structure and also affect the applications.

2.2.4.1 Cluster

Cluster is a group of computer servers that are interconnected by network. It

provides an economical way to achieve high performance. Thus, the performance is

increased by the aggregation of more nodes, as a consequence, computational power

will be maximized. It is an economical way for departments that could not afford an

expensive supercomputer, have the alternative with this technology (EL-REWINI; ABD-

EL-BARR, 2005).

Source: Extracted from Tanenbaum and Steen (2007).

Figure 2.7: Cluster example.

In the Figure 2.7 a beowulf cluster is shown. It consists of a group of computers

nodes that are controlled by a master node.

In addition, Tanenbaum and Steen (2007) emphasize that clusters have be-

come financially attractive to building a supercomputer using off-the-shelf technology,

by connecting computers to a high-speed network. In almost all cases, clustering is

used for parallel programming in which a single program (intensive computing) runs in

64

parallel on multiple machines.

According to Buyya, Broberg and Goscinski (2010), cluster technology allowed

access to large amounts of computing power, aggregating resources. The improve-

ment of this technology, in conjunction with grid computing is one of the roots of cloud

computing.

2.2.4.2 Node/Workstation

Each individual computer, is called a node. So, a node is a computer device

that is interconnected and hence, forms a larger data structure. Each individual node

can be a workstation, a personal computer or a multiprocessor system.

They are usually connected by a high-speed LAN and execute a software that

allows them to work together. Therefore, they can engage their own activities while at

the same time, can cooperate with others computational tasks, in order to solve a prob-

lem, such as scientific or engineering (EL-REWINI; ABD-EL-BARR, 2005), (TANEN-

BAUM; AUSTIN, 2013).

According to Chang (2015), nodes can help to provide a cloud. There are

several scenarios to build a desktop cloud, such as a group of universities. Therefore,

they can benefit from sum of the computational resources provided by PCs, laptops

and server nodes.

2.2.4.3 Grid Computing

The term grid computing emerged in the 1990s with the definition of a dis-

tributed computing infrastructure that focuses on large-scale resource sharing, innova-

tive applications and high-performance orientation (FOSTER; KESSELMAN; TUECKE,

2001).

65

In addition, authors El-Rewini and Abd-El-Barr (2005) emphasized that while

clusters are collections of computers linked together as a single system, a grid consists

of multiple systems that work together, keeping their identities distinct. Grid resources

can use distributed systems to achieve and aggregate performance as they balance

the workload.

Source: Extracted from HP (2005).

Figure 2.8: Pauá Grid Project.

An example of grid is the Pauá Grid Project (Figure 2.8). According to Wilter

et al. (2005), Pauá is an initiative created by HP Brazil R & D to build a Brazilian

national grid. PAUÁ currently involves 11 different universities and research centers

collaborating with HP Brazil R & D in HP’s "ecological research system". PAUÁ is a 250-

node grid that supports the execution of Bag-of-Tasks applications whose tasks are

independent. Bag-of-Tasks (BoT) applications are parallel applications whose tasks

are independent of one another. Because of the independence of their tasks, BoT

applications can run successfully on widely distributed computing networks.

However, in accordance to Cafaro and Aloisio (2010), cloud and grid computing

66

are different from the customers point of view. In the cloud, you pay for the use, and in

the grid, you schedule your work, regardless where you run it. They are not exclusive

to each other, but you can use a grid on a cloud.

2.2.5 Virtualization

Virtualization is a technology that has changed the way of how services are

provided. It makes possible to have a better use and efficiency of hardware resources,

by installing multiple operating systems on different virtual machines on the same hard-

ware. According to Portnoy (2016), it is widely used because it provides an abstraction

of hardware resources (memory, disk, processors) to a virtual machine.

Pujolle (2015) emphasizes that the main idea of a virtual environments is to

abstract from the user and work like a normal setup. In a common situation the OS is

installed directly over the hardware. But in the most cases the system does not need

all the available resources and wastes them. The virtualization works by distributing

these resources to the VMs (Virtual Machines) and thus promoting a better use of the

available hardware.

In Figure 2.9, the virtualization layers are shown. First, is the physical layer,

shortly thereafter the hypervisor layer, guest OS layer and finally, the virtual machine

layer.

Virtualization has many benefits, such as reduce power consumption, cost effi-

ciency, isolate applications and provide a better infrastructure management. However,

Pujolle (2015) highlights that the basic virtualization problem is the significant reduc-

tion of performance. In order to recover this performance, it needs a computer or even

server a much more powerfull.

There are several virtualization techniques, the main ones are described in the

67

Source: Extracted from Portnoy (2016).

Figure 2.9: Virtualization Layers.

following sections.

2.2.5.1 Para-Virtualization

Also known as OS-assisted, para-virtualization allows the OS to have direct

access to the hardware. Refers to communication between the OS and the hypervisor

to improve the performance and efficiency. According to Sosinsky (2010) an abstrac-

tion occurs to place the I/O operations outside the virtual environment, thus allowing a

more efficient execution of I/O devices. In a simple way it is a host operating system

performing the I/O devices through a para-API.

2.2.5.2 Container Virtualization

The container-based virtualization allows a physical server to run multiple iso-

lated operating system instances. Thus, the host operational system does not need

to emulate guest system call, because they share the same kernel (MUKHEDKAR;

VETTATHU; CHIRAMMAL, 2016). This is provided by an isolation of the resources.

Containers make their abstraction layer at the operating system level, rather

68

than the hardware level. Thus, the main benefit of this approach is that it can mini-

mize the overhead caused by the virtualization layer. Therefore, the technology that

orchestrates container virtualization is promising and the difference in performance

compared to other virtualization technologies, could reveal a better way to deliver and

deploy applications in cloud computing.

However, the container model do have some limitations. As emphasized by

Portnoy (2016), all workloads must run the same operating system or kernel because

it abstracts the operating system level. Furthermore, the isolation between workloads

is not as robust as what hypervisors and virtual machines provide.

2.2.5.3 Emulated

According to Matthews et al. (2008), in this kind of platform the hardware is

totally divergent from the physical architecture, the platform is entirely simulated by

the hypervisor, so that the guest, where commonly executes a specific application,

performs all its functions without the need for changes.

This type of virtualization is used when there is a need to test certain software

under development on a specific hardware, the emulator in this case will cause an

environment to be reproduced taking into account the requirements that determines

the application, this environment is often completely distinct from the actual computer

architecture.

2.2.6 Hypervisors

According to Portnoy (2016) a hypervisor is a layer of software located be-

tween hardware resources and a virtual machine. It provides the virtual environment

to these workloads, communication between themselves and provides system cluster-

ing for high availability. On 2.10 is shown where the hypervisor layer is located.

69

Source: Extracted from Portnoy (2016).

Figure 2.10: Where hypervisor resides.

In addition, as emphasized by Sosinsky (2010), hypervisors are classified into

two types: type 1 VM or native VM (2.11(a)), those that have no host operating system

between the hypervisor and the hardware, is a bare system implementation. Without

and intermediary OS, hypervisors type 1 are much more efficient and safer. The type

2 or hosted VM (2.11(b)), is the one that has an OS between the hypervisor and the

hardware, respectively. It creates a software interface to emulate the devices with

which the system normally interact. On 2.11 is presented a comparison between the

layers of type 1 and type 2 hypervisors.

Regarding to hypervisors, there is a large number of them. The main ones are

described below.

2.2.6.1 KVM

According to Mukhedkar, Vettathu and Chirammal (2016) Kernal-based Vir-

tual Machine (KVM) is a next generation open source hypervisor integrated in Linux.

Built on experience with previous generation of technologies, KVM works with modern

hardware available today. When KVM kernel module is installed, it transforms the Linux

kernel into a hypervisor.

70

(a) (b)
Source: Extracted from Sosinsky (2010).

Figure 2.11: Comparison between type 1 and typer 2 hypervisors.

Source: Extracted from LinuxPlanet (2017).

Figure 2.12: Kernel-based Virtual Machine Structure.

In addition, the KVM has a virtualization method, which resembles a non-

virtualized system as presented in Figure 2.12. Furthermore, a perceptual difference

in comparison to other hypervisors is the capacity to use a little disk space, because it

71

has a great reuse of the current hardware’s resources.

In the KVM, there are components that work together to provide operations to

the virtualized operating system. In the Figure 2.13 the components are shown and

described below.

Source: Extracted from Goto (2011).

Figure 2.13: KVM Components.

• Virt-Manager: It is a desktop user interface for managing virtual machines through

the libvirt component. Virt-Manager is used combined with the KVM. It provides

a brief overview of running domains, their live performance and the uses of static

resource utilizations (VIRT-MANAGER, 2017).

• Libvirt: Is a collection of software that provides management of virtual machines

in a pleasant way and other virtualization features such as storage and net-

work interface management. It includes an API library, a daemon (libvirtd) and a

command-line utility (virsh). Its primary purpose is to provide a way to manage

multiple provider or different virtualization hypervisors (LIBVIRT, 2017a).

• QEMU: The KVM kernel, by itself, can not create a VM. To do this, it must use

QEMU, a hardware emulation and virtualization process. It can be used as a

72

machine emulator, running operating systems and programs made for a system

built on a different machine. When used as a virtualizer, QEMU achieves near-

native performance by running guest code directly on the CPU host. QEMU

supports virtualization when running on Xen hypervisor or KVM (QEMU, 2017).

Source: Extracted from Goto (2011).

Figure 2.14: QEMU/KVM execution flow.

The QEMU/KVM execution flow is shown in the Figure 2.14. According to Goto

(2011), a file named /dev/kvm is created by the KVM module. This file allows

QEMU to transmit some requests to the KVM to perform hypervisor functions.

When QEMU starts a guest system, it makes a system call called ioctl(). When it

is time to start running the OS, QEMU again calls ioctl() to order the KVM to start

a guest system. Kernel mode performs a VM entry and starts running the guest

system. In addition, when the guest system performs a sensitive process, an VM

Exit runs and KVM identifies the reason for this output. If a QEMU intervention is

required, the control is transferred to the QEMU process and executes the tasks.

When the execution is finished, QEMU re-runs an ioctl() request and KVM returns

the guest processing.

• KVM Kernel Module: It is a Linux kernel module, it works with the VM exits of the

73

guest operating systems and performs the VM input instructions (GOTO, 2011).

• Extended Page Table (EPT): It extends the address translation engine provided

by the CPU. Prior to its development, it was necessary to perform address trans-

lation processing in software using a technique called "shadow paging".Thus, it

allows the "physical addresses" used in a virtual machine to be converted by

the CPU, making software conversion unnecessary. EPT plays a key role in

KVM operations, resulting in a significantly improved virtual machine performance

(GOTO, 2011).

• VT-d: According to Intel (2017a), Intel R© Managed I/O Virtualization Technol-

ogy (VT-d) extends Intel Virtualization Technology (VT) by providing hardware

assists for virtualization solution. Intel VT-d improves the security and reliabil-

ity of systems and also improves the performance of I/O devices in a virtualized

environment. In addition, the author Goto (2011) emphasizes that VT-d is an ad-

dress conversion mechanism for I/O devices. Therefore, it must be supported by

firmware.

• Virtio: According to Goto (2011), it is a mechanism introduced to reduce the

overhead associated with QEMU and improves high-speed processing. Libvirt

(2017b) introduces Virtio is an virtualization standard that runs in the virtual en-

vironment and works in conjunction with the hypervisor. Thus, it provides a high

performance network and disk operations.

• Kernel Same-page Merging (KSM): According to Goto (2011), its functionality

is to monitor the memory usage of processes and then merge duplicate pages

into a common page. Linux (2017) argues that KSM is a memory-saving feature

and can be useful for any application that generates same data.

74

2.2.6.2 LXC (Linux Containers)

LXC is a container technology for Linux, which uses cgroups to control system

resources and namespaces to create and isolate the objects within the container.(FELTER;

FERREIRA; RAJAMONY; RUBIO, 2015). According to LXC (2017), it is a user-space

interface for the linux kernel. Using powerful APIs and some tools, it provides to Linux

users the creation of management systems and applications containers. Therefore, it

is defined as being a lightweight virtualization, which does not require physical hard-

ware emulation (BESERRA; MORENO; ENDO; BARRETO; SADOK; FERNANDES,

2015b).

When full-virtualization is used, it causes an overhead using a hypervisor, de-

creasing performance. Therefore, the main purpose of using Linux Containers is to

provide resources or the same environment such as a VM, and to avoid the overhead

caused by the hypervisor. LXC uses the same linux kernel, avoiding the utilization

of a second kernel for virtualization and through a combination of kernel security fea-

tures makes it possible to create a virtual environment on the same machine without a

hypervisor (LXC, 2017).

(a) KVM. (b) LXC.

Source: Extracted from Beserra et al. (2015b).

Figure 2.15: Comparing the structure of KVM and LXC.

75

The comparison shown on Figure 2.15, between KVM and LXC demonstrates

the layers of each one. LXC takes full advantage of the Linux kernel by isolating OS

resources.

According to IBM (2017), containers can divide resources that are managed

by an operating system, into isolated groups to balance demands on resource usage.

Furthermore, LXC can execute native instructions to the CPU core without any spe-

cial interpretation mechanism. Thus, through the use of containers, the OS gives the

applications the illusion of running on separate machines while sharing many of the

underlying resources.

2.2.7 Cloud Computing

Cloud computing is a model that allows a pool of resources such as, network,

servers, storage, applications, and services, to be delivered ubiquitously. Cafaro and

Aloisio (2010), argues that the cloud refers to moving files from the local storage to

store them in secure scalable environments. Likewise, according to ISO/IEC-17788

(2014), cloud computing is a paradigm that enables network access to a scalable and

elastic pool of shareable physical or virtual resources with self-service provisioning and

administration on demand.

As defined by Badger et al. (2012), the cloud model has five essential charac-

teristics, three service models, and four deployment models.

There are some characteristic to define a cloud computing, they are:

• On-demand self-service

A costumer can, as it needs, configure computing capabilities and features with-

out human interaction. Giving the option whenever necessary (BADGER; CHAP-

MAN; PATT-CORNER; VOAS, 2012). This on-demand self-service is usually

76

done through an online control panel, at the hosting provider.

• Broad network access

Capabilities are available over the network and are accessed through standard

mechanisms that promote use by heterogeneous thin or thick client platforms

(e.g. smart phones, tablets, laptops, and workstations) (BADGER; CHAPMAN;

PATT-CORNER; VOAS, 2012). This characteristic, is the essential way of con-

nection between the servers and clients.

• Resource pooling

According to Badger et al. (2012), resources are pooled to serve multiple cos-

tumers using a multi-tenant model. The different types of physical and virtual

resources are dynamically assigned as the costumer demand. The resource

pooling must be able to serve the costumer with high level of abstraction, regard-

less of the physical location of the resources (country, state or datacenter).

• Rapid elasticity

Cloud computing must provide the capacity for the costumer to expand they com-

putational power, whether automatically or not. This technical approach should

be rapid and without human interaction. Therefore, it avoid the lack of resources.

In according with Badger et al. (2012), the capabilities available for provisioning

often appear to be unlimited and can be appropriated in any quantity at any time.

• Measured service

Cloud system allow the resources to be monitored, controlled, and reported, pro-

viding transparency for both the provider and consumer of the utilized service

(BADGER; CHAPMAN; PATT-CORNER; VOAS, 2012). These characteristics,

are essential in the model as a service, providing both the user and the provider,

to administrate the contracted plan and the resources used.

77

2.2.7.1 Public Cloud

According to Ruparelia (2016a), public cloud is a deployment model and, as

the name suggests, it is available to the public as a whole or also to organizations.

The company’s provider of this service is responsible to share its infrastruc-

ture for consumers use. Typically, in the public cloud resources are provided such as;

infrastructure; platform; software; information; and the most know, storage. Examples

of community cloud include Google Docs, Microsoft Office 365 and Amazon EC2. In

according with Sosinsky (2010), public cloud are services sold by large organizations

that have cloud computing services, for ordinary users and industries.

2.2.7.2 Hybrid Cloud

The hybrid cloud is a composition of several types of other clouds, including

private, public and community clouds. The author Sosinsky (2010) emphasizes that a

hybrid cloud is an amount of clouds with their unique identities, working together as a

unite.

In addition, as mentioned by the author Ruparelia (2016a), hybrid cloud can

also be known by cloud bursting. This name is used because services bursts out of its

cloud for use resources from other clouds.

2.2.7.3 Private Cloud

A private cloud refers to a model of deployment of the cloud done in-house.

In contrast to the public cloud, the private cloud is typically used by companies that

want storage data on their internal infrastructure. Thus, as defined by Kavis (2014),

the cloud infrastructure is provisioned for exclusive use by a single organization that

can be owned, managed, and operated by the organization.

78

The private cloud infrastructure is operated exclusively for an organization. In

this case, the private cloud is an emulation of the public cloud, usually on a private

network, and exist to support the goals of an organization. Therefore, it gives more

control over the security architecture, and has less exposure (SMOOT; TAN, 2011).

2.2.7.4 Community Cloud

This cloud infrastructure is a hybrid cloud for a group of specific individuals or

organizations that shares a common goal, and work together on joint projects. It can be

managed by the organizations or a third parties in a central cloud computing (SMOOT;

TAN, 2011).

2.2.8 Service Models

Acordding to Badger et al. (2012) cloud computing is composed by three main

service models. Also known by SPI (SaaS, PaaS and IaaS), they are described in the

next sections.

2.2.8.1 IaaS (Infrastructure as a Service)

Infrastructure as a service, as defined by Badger et al. (2012), is a capabil-

ity provided to the consumer to alocate processing, storage, networking, and other

computing resources, allowing the deployment of operating systems and applications.

Thus, the service consumer, does not manage the underlying cloud infrastructure, only

the service provider. Therefore, it provides an abstraction layer of the infrastructure.

According to Kavis (2014), each cloud service model provides abstraction and

automation levels for these tasks, providing more agility for cloud service consumers,

so they can focus more time on their business problems and less time to manage infras-

tructure. Thus, the provider can provide the resources that the consumer needs with

79

Source: Extracted from Buyya, Broberg and Goscinski (2010).

Figure 2.16: Service Models.

limited control of network components, such as firewalls and load-balance (SMOOT;

TAN, 2011).

2.2.8.2 PaaS (Platform as a Service)

Badger et al. (2012) defines Platform as a Service, as a capability provided

to consumers, to deploy supported applications on the cloud infrastructure. This con-

sumer does not manage the resources of the cloud infrastructure, but has the control

of its application deployed there. The author Buyya, Broberg and Goscinski (2010),

defines PaaS, as an environment where developers can create and deploy their appli-

cation, without knowing the required use of the hardware.

In addition, Sosinsky (2010) emphasizes, that PaaS provides VMs, OSs, ap-

plications, services, deployment frameworks, transactions and control structures. Fur-

thermore, the service provider is responsible for managing the cloud infrastructure and

the client for the applications that is deployed.

80

2.2.8.3 SaaS (Sofware as a Service)

Badger et al. (2012) defines Software as a Service, as a capability provided to

the consumers, to use an application, running from a cloud infrastructure. This applica-

tion is available on several client devices. Also is defined as a new model of delivering

applications. The author Ruparelia (2016a) emphasized some important advantages of

SaaS; use only the application or applications needed; use only when necessary; and

avoid to pay the installing and maintaining the application and its supporting hardware

infrastructure.

In addition, according to Buyya, Broberg and Goscinski (2010), the utilization

of SaaS reduces considerably the maintenance of software, and also, simplifies the

development and testing for providers.

2.2.9 Open Source IaaS Tools

The open source IaaS Tools, is a platform that allows the deliver of infrastruc-

ture service by the provider. Additionally, according to Shrivastwa and Sarat (2015),

in the cloud environment, the most important component is the orchestrator, who is

responsible for delivering the hardware and software resources in aggregate manner,

automating the work-flows required to deliver a service.

Some of the most important open-source orchestrator in the cloud community

are: Apache CloudStack; OpenStack; Open Nebula. These open source projects, have

a growing community and advantage of sharing knowledge. Therefore, many events

are performed around the world and supported by a large numbers of sponsors.

81

2.2.9.1 Apache CloudStack

According to Chandrasekaran (2014), Apache CloudStack2 is an open source

software for building public and private clouds, developed and supported by a huge

community around the globe as well as backed by some of the leading companies

interested in cloud computing area. The main goal of the project is offer scaling out

computational resources through an environment capable to offer IT infrastructure by

managing the available computational resources. Thus, the CloudStack can provide a

high availability cloud computing infrastructure.

Source: Extracted from Sabharwal (2013).

Figure 2.17: CloudStack modules.

The Figure 2.17 provides an overview of the architecture used by CloudStack.

These modules have an important role by managing the distribution of resources and

segregation of them, providing the resources needed to build a public, private or hybrid

cloud which are capable to manage thousands of physical servers (CLOUDSTACK,

2017a).

The CloudStack main architecture is based on layers which provides the com-

2https://cloudstack.apache.org/

82

ponents necessary to deploy and manage the cloud. This infrastructure layer com-

prises all the hardware resources available to provide storage, network and security.

Thus, these resources are utilized by the hypervisor layer enabling the resource pooling

and multi-tenancy between multiple machines (SABHARWAL, 2013).

On the other hand, the management layer provides capabilities to administrate

the cloud environment. This layer, as emphasized by Sabharwal (2013), implements

APIs, which allows automation, orchestration, task execution and service management

helping the integration and interaction among various pieces of software’s, which are

a critical point between the IT organization and its infrastructure. Consequently, the

deployment of the CloudStack consist on a hierarchical structure (Figure 2.18) that will

manage the underlying infrastructure.

Source: Extracted from Sabharwal (2013).

Figure 2.18: CloudStack Architecture.

In accordance with CloudStack (2017b), these components showed on Figure

2.18 provide the following features:

• Zone: Logical division that can represent an entire datacenter of an organization,

providing physical isolation and redundancy.

83

• Pod: Can be compared to a physical rack in a datacenter. Contains a single or

various clusters where resides the hosts. CloudStack uses the Pod to manage

the subnet of the system VMs logically for administrative purposes.

• Clusters: It’s a logical group of hosts contained within pods. They all also have

the same hypervisor, hardware, and share the same primary storage.

• Hosts: Provides the computing resources to run guest virtual machines. Each

host has hypervisor software installed on it to manage the guest VMs.

• Primary Storage: Provides virtual disks for the VMs on running on the hosts.

• Secondary Storage: Responsible to store templates, ISO images and disk snap-

shots. The secondary storage can share the data to all hosts throughout the

cloud if configured to do that.

• Management Server: The central point of administration which provides func-

tionalities to manage the server. It comprehends the web user interface; APIs;

creation of VMs; LAN configuration; storage; orchestration.

• CloudDB: Stores all the configuration information, such as, computer offer, hosts

profiles, accounts credential, network information.

• Network Offering: Comprehends a group of network services, such as, DHCP,

DNS, VPN, Firewall, and port forwarding.

Apache CloudStack can aggregate computational resources to the cloud including new

nodes by installing the CloudStack agent on these nodes. These agents are responsi-

ble to communicate with the CloudStack management service in order to control all the

instances on the host (CLOUDSTACK, 2017c). Additionally, CloudStack also enables

integration with AWD public cloud, by using his APIs services, providing an environ-

ment able to support a hybrid cloud. Therefore, according to Chandrasekaran (2014),

CloudStack includes almost all the features that most organizations expect from an

IaaS cloud.

84

2.2.9.2 OpenStack

OpenStack is an open source software for creating private and public clouds 3,

designed to deliver scale-out cloud environments, deployed in datacenters around the

world (JACKSON; BUNCH; SIGLER, 2015). Thus, it controls a large set of computa-

tional resources, providing a heterogeneous infrastructure allowing the IT administrator

manage the cloud (Figure 2.19).

Source: Extracted from OpenStack (2017a).

Figure 2.19: Openstack Software Diagram.

The OpenStack project are currently supported by 643 companies (including

NASA and Rackspace), in more than 187 countries and has global developer collab-

oration, becoming one of the biggest names in cloud computing. Part of this global

success, is that OpenStack is designed for ownership and control a huge infrastructure

that can comprehend the public, private or hybrid cloud. Delivering service models

such as IaaS, SaaS and PaaS. In Addition, OpenStack supports the ARM and x86

architecture, which gives more comprehensiveness in terms of platform support.

3https://www.openstack.org/

85

According to Shrivastwa and Sarat (2015), one of the main features of Open-

Stack is that it is not a single product, but a collection of multiple open source projects,

which consists of several independent parts. Thus, it provides services to the adminis-

trator, such as VM provisioning, database and image storage. Additionally, OpenStack

has its own identity key and access management, business-to-business toolkits, stan-

dardized services and Amazon EC2 compatibility. Therefore, it makes the OpenStack

a flexible cloud provider.

The OpenStack architecture has some keys components that composes this

particular cloud environment. These individual services interact with each other through

public APIs and, for communication between the processes of one service, a protocol

is used for message-orientated middleware (AMQP).

Source: Extracted from OpenStack (2017a).

Figure 2.20: OpenStack Architecture.

As mentioned by Shrivastwa and Sarat (2015), the core components with the

gray box in Figure 2.20 are the minimum required to run OpenStack. As a characteris-

tic, each one has its own database and can run independently, but has dependencies

among them.

86

• Keystone: Provides authentication for others OpenStack components, being the

first to be installed. Thus, it manages access to services such as identity, re-

source, assignment, token, catalog and policy.

• Horizon: Provides the web-based user interface to administrate OpenStack via

dashboard.

• Nova: Computing component that supports hypervisors for virtual machines. It

also has some subcomponents responsible for managing access to a virtual ma-

chine console.

• Glance: Allow storage of current images, templates and snapshots for deploy-

ment. Storing them on swift.

• Swift: Is the OpenStack object storage service. It is responsible to store and

retrieve the Binary Large Object (BLOBs), used to store Glance images.

• Cinder: Manages the block storage from the Nova VMs, providing the use of

various storage systems. Neutron: Provides network service and other features

such as firewall and load balancing.

• Heat: Is the orchestrator service, responsible to coordinate and integrate the

others services.

• Ceilometer: Its components are responsible to collect metering data. This is

specially used on the model pay-as-you-go.

• Sahara: Provides a data-intensive application cluster which is useful on big data.

• Designate: Provides DNS service, enables the use of PowerDNS, BIND, NSD,

and DynECT.

• Ironic: It is an API for bare metal technologies, which interacts with bare metal

hypervisors using PXE boot and the Intelligent Plataform Management Interface

(IPMI).

87

• Zaqar: Provides a messaging API for notification service.

• Barbican: REST API designed for the secure storage. It manages various types

of secret data, such as passwords, encryption keys and certificates.

• Manila: It is a shared file system service based on Cinder. Manila provides co-

ordinated access to shared or distributed file systems using a file-based storage

(OPENSTACK, 2017b). It can be used to mount a single file system on multiple

Nova instances.

• Murano: Is an application catalog, allowing the applications developers to publish

cloud-ready applications in a categorized catalog through the dashboard.

• Magnum: Focused on Linux Containers, Magnum uses the Heat orchestration to

improve and make a container orchestration more efficient.

• Kolla: Also focused on containers, provides production-ready containers, allowing

the execution of OpenStack services in containers, facilitating governance.

• Congress: Provide Police as a Service, which offers governance and compliance

in others cloud services. It helps to specificity more restricted politics to the cloud

environment.

2.2.9.3 OpenNebula

According to Chandrasekaran (2014), OpenNebula is a cloud solution that

helps virtualized data centers oversee private, public and hybrid clouds. Also, it is

a flexible tool to provide storage, network and virtualization technologies, allowing dy-

namic deployment of services on distributed infrastructures.

OpenNebula4 was created as a research project by the Distributed Systems

Architecture (DSA) Research Group 5 at Madrid in 2005, and later the first public ver-
4https://opennebula.org/
5http://dsa-research.org

88

sion was released in 2008. It evolved and became completely open source, being

frequently updated by the community. The differential of OpenNebula, is that it guar-

antees users full interoperability with the existing infrastructure components available

today. Since 2010, OpenNebula has obtained commercial support from C12G Labs,

giving a boost to the vitality of the project (TORALDO, 2012).

Its deployment does not require a particular hypervisor, being the choice of this

free. It also has no specific infrastructure requirements, fitting in any pre-existing en-

vironment, storage or network. OpenNebula has a dedicated Quality Assurance (QA)

team, to perform tests with a large number of scenarios. This considerable reduces

the number of bugs. There is also a continuous integration system, which automati-

cally tests every change in OpenNebula code realized by its development team. The

Figure 2.21 shows the components of OpenNebula and also the level at which they

operate.

Toraldo (2012) emphasized that security is another point taken seriously in

OpenNebula, which performs all communications between hosts through security con-

nections protected by SSH (Secure Shell) RSA keypairs and SSL (Security Socket

Layer). In addition, each virtual network is protected with a firewall, known as ebtables
6.

According to Toraldo (2012), the lowest level is composed by drivers, which talk

directly to the OS components. They are divided into three types, described bellow:

• Transfer drivers: Works with disk image management on the storage system.

• Virtual Machine drivers: Works with managing virtual machine instances on

hosts. These drivers are hypervisor-specific.

• Information drivers: Remotely executed through SSH, these drivers are used

6http://ebtables.sourceforge.net

89

Source: Extracted from Toraldo (2012).

Figure 2.21: OpenNebula Components.

to retrieve the current status of VMs instances and hosts.

The middle level known by Core, is developed in full optimized C++, providing

a good scalability and robustness. According to Sotomayor et al. (2008), the Open-

Nebula core manages the lyfe-cicle of the VMs performing basic operations, such as

deployment, monitoring, migration or termination. In addition, all information collected

from the drivers is stored in a SQLite database or in a replicated MySQL database

in the OpenNebula core, which can be modified by custom scripts or softwares. The

latter, called Tool level, is the closest to the end user. It represents the interactions by

command line and tasks scheduling (TORALDO, 2012).

Because OpenNebula is deployed based on a cluster model, it uses a frontend

that runs the main services of the tool and manages the rest of the nodes that are the

slaves. The Figure 2.22 is a diagram which represents an OpenNebula system and

below it, the description of each component:

• Frontend: The machine that runs OpenNebula services is called frontend. It

manages the nodes and must be able to communicate with all hosts and access

the network storage mounts.

90

Source: Extracted from Toraldo (2012).

Figure 2.22: OpenNebula System.

• Hosts: Hosts are physical machines that will run the virtual machines. They are

managed through SSH from the frontend machine.

• Image Repository: It maintains the VM images. Hence, it must be accessible

through the frontend, using any storage technology such as NAS, SAN (Storage

Area Network) or any GNU/Linux distributed network-filesystem. In addition it

should be large enough for the storage of all VMs images in its infrastructure.

• Physical Network: It provides an easily adaptable and customizable network

subsystem, in order to better integrate with specific network requirements.

2.2.10 IaaS Tools Comparison

Cloud computing architecture is a complex environment composed of many

technologies that integrate and manage various types of components, providing a sta-

ble structure without comprising performance (CHANDRASEKARAN, 2014), (HUR-

WITZ; BLOOR; KAUFMAN; HALPER, 2010). Frequently, a question is asked “what

cloud platform is best?”. Unfortunately, this question does not have a simple answer

because many technologies are involved and different performance results may vary

91

depending on the deployment made. Therefore, the most appropriate approach is to

analyze the technologies and tools supported by the cloud platform and analyze what

best fits the needs of the user.

For a better understanding, we use a similar approach made by Vogel (2015),

which analyzes the robustness (flexibility and resilience) of the most well-known cloud

computing platforms. In addition, this method provides an overview, and also helps to

conceptualize and characterize many components and technologies presented in the

studied cloud computing platforms.

2.2.10.1 Resiliency

Support OpenNebula OpenStack CloudStack
Virtualization Technology Xen, KVM, Vmware,

Hyper-VirtualBox,
OpenVZ LXC/LXD,
ONEDock

Bare Metal (via IPMI),
Hyper-V, KVM, vSphere
(via vCenter), Xen, Oracle
VM 3.0+, VMware, LXC

Bare Metal, Hyper-V,
VMware, Xen, KVM,
QEMU, UML, OpenVZ,
LXC/LXD, Nova-Docker

Storage Technology NFS, SSH(transfer),
Ceph, iSCSI - Libvirt
Datastore, VLM, vCenter,
DatastoreStorage DRS

NFS, SMB/CIFS, Ceph
RBDSAN, iSCSI, Scale
Computing

LVM, Ceph RBD, Glus-
terFS, NFS, Sheepdog,
SambaFS, Block Bridge
EPS, iSCSI, Software-
Defined Storage, Fiber
channel

Virtual Disk Formats QCOW2, LVM, Ceph
(Shared FS), Raw De-
vice, Mapping((RDM)
Datastore), VMDK,
VMFS

LVM, VMDK, VHD,
QCOW2, VMFS, ISO,
OVA

QCOW2, RAW, VHD,
VMDK, VDI, VHDX, AKI,
AMI, ARI, ISO, PLOOP,
BARE, OVF, OVA, AUFS

Network vCenterBridged(dummy,
Security Groups, ebta-
bles), VLAN, VXLAN,
Open vSwitch, IPAM

NVP, VSP, MidoNet,
VXLAN, Open vSwitch,
AutoScale

Neutron (NaaS), Open
vSwitch, NVP, OpenFlow

Operating System Ubuntu, Debian, RedHat,
SUSE, CentOS, Windows
(>=7)Devuan, VyOS,
gUSE, CloudBroker,
Wrapper, CoreOS alpha,
FreeBSD 10.3

XenServer, Ubuntu,
RHEL, CentOS, Win-
dows, FreeBSD, Fedora

Debian, Ubuntu, RHEL,
CentOS, Fedora, Suse,
KVM for IBM z Systems,
Oracle Linux, SLES, Win-
dows

Storage (Block Storage /
Object Storage)

Ceph RBD (Block Stor-
age)

Ceph RBD (Block Stor-
age), Swift (Object Stor-
age)

Cinder (Block Storage),
Swift (Object Storage),
Ceph RBD (Block Stor-
age)

Source: Updated from Vogel et al. (2016).

Table 2.3: IaaS tools support for resiliency.

The table 2.3 is based on the previous study by Vogel et al. (2016). A deep

92

investigation was conducted using the official documentations of the tools as reference,

to fill the table with the new technologies developed and resources brought by the

analyzed platforms. Therefore, modifications were made to update the information and

categorize according to the context of this study.

The table comprises the main current technologies supported by the three

open source IaaS tools used in our study. These technologies form the infrastructure

elements that composes the cloud environment and also support for the resilience,

which is the ability to adopt the system to constant changes or failures, while main-

tains the availability (VOGEL; GRIEBLER; MARON; SCHEPKE; FERNANDES, 2016).

Furthermore, according to Prodan and Ostermann (2009) and by Dukaric and Juric

(2013), these elements are particularly critical in cloud computing because different

configurations can be made, and as a consequence, application performance may

vary depending on the deployment performed.

• Virtualization Technology: refers to hypervisors and container-based, supported

by the tools used to emulate hardware resources used by the instances. Con-

sequently, different hypervisors may form different based clouds, for example,

KVM-based cloud or LXC-based cloud.

• Storage Technology: Comprehends the technology and architectures used to

provide storage solutions for the tools.

• Virtual Disk Formats: It is used by virtualization technology to provide storage

functionality and enable the provisioning, migration and maintenance of virtual

machine across different platforms (VMWARE, 2008).

• Network: Refers to the component responsible for providing network resources

such as DHCP, VLAN and Iptables. It is appointed by Dukaric and Juric (2013)

as being a complex component for cloud computing because it is not only re-

sponsible to manipulating the entire network, but used to connect virtual machine

instances.

93

• Operating System: It is a list of guest OSs supported by VMs. Only major dis-

tributions are listed, but it should be emphasized that in the case of OpenStack,

basically all the Linux distributions are supported, provided they meet the mini-

mum requirements.

• Storage (Block Storage / Object Storage): Different technologies used to pro-

vide data storage that are capable of handling large amounts of data (MUKHED-

KAR; VETTATHU; CHIRAMMAL, 2016).

The main conclusion in comparison with the study conducted by Vogel et al.

(2016), is that many more technologies are currently supported by IaaS tools in relation

to resilience. Through this, we can assume that the IaaS cloud tools, along with the

support of companies and the community, have made some huge improvements to de-

liver new technologies, as well as adding new features. Foremost, the main difference

we can notice is the introduction of new storage technologies and virtual disks formats.

This reveals an effort not only to make the open source tools more attractive but also to

make the tools intercompatible, as is the case with the introduction of the OVF (Open

Virtual Format) disk formats, which is a technology that can provide portability between

clouds, both public and private. In addition, is the introduction of support several new

operating systems that we did not have before, moving from some restricted OS fam-

ilies to all families, having only restricted OS hardware requirements. This allow us to

conclude that the cloud platforms will continue to improve their compatibility between

public and private tools as well as support from companies that develop and deliver

new technologies, such as Dell, IBM and SolidFire. Thus, we will have an even more

rich, flexible and intercompatible environment.

2.2.10.2 Flexibility

The Table 2.4 represents the detailed description of the main components that

are present in the architecture of cloud management tools. The terminology and defini-

94

Support OpenNebula CloudStack OpenStack
Resource abstraction layer

Compute Oned Libcloud Nova

Storage Internal Internal Object storage (Swift) /Block
Storage(Cinder)

Volume Internal Internal Nova-Volume
Network Virtual Network Manager Internal Neutron/Nova-network

Core service layer
Identity service Internal IAM plugin Keystone

Scheduling Scheduler Internal Nova-scheduler
Image repository Internal Internal Glance

Charging and billing Showback CloudStack Usage Ceilometer
Logging Internal Internal Internal

Support layer
Message bus Internal internal/RabbitMQ RabbitMQ

Database sqlite/MySQL MySQL MySQL/Galera/MariaDB/MongoDB
Transfer service Internal Internal Nova Object store/cinder

Management layer
Resource management Internal Internal Nova
Federation management Internal / Federated Keystone
Elasticity management Auto-scaling Elastic Load Balancing Elastic Recheck

User/group management Internal Internal Internal
SLA definition External / External

Monitoring probe/ssh/OneGate External Monasca/ Telemetry
Reporting code reporting / Monasca/ Telemetry

Incident management Internal Internal Monasca/ Telemetry
Power management External External Blueprint driver
Lease management External External Blazar

Management tools
CLI tools OpenNebula CLI cloudmonkey OpenStack (CLI)

APIs Public cloud and Plugins Public cloud and Plugins Public cloud and Plugins
Dashboard Sunstone (Admin UI, User UI) Admin UI Horizon(Admin UI)

Orchestrator oneflow / heat
Security layer

Authentication Basic Auth/OpenNebula Auth/
x509Auth/LDAP SAML/LDAP LDAP/Tokens(APIs)/X.509/

HTTPD/ Kerberos
Authorization Auth driver SAML Keystone

Security groups Internal Internal Internal
Single sign-on / SAML SAML

Security monitoring External External External
Control layer

SLA enforcement / / /
SLA monitoring / / /

Metering External External ceilometer
Policy control / (IAM) Plugin DynamicPolicies

Notification service / Internal /
Orchestration OneFlow Internal heat

Value-added services
Availability zones Internal Internal Internal
High Availability External External External

Hybrid support Amazon EC2/Microsoft Azure/
IBMSoftLayer Amazon EC2 HP Helion/Amazon EC2/

IBM/Microsoft Azure
Live migration Internal Internal Internal

Portability support Internal / /
Image contextualization one-context / /

Virtual application support / / /

Source: Updated from Vogel et al. (2016) and Dukaric and Juric (2013).

Table 2.4: IaaS tools support for flexibility.

95

tions are based on previous studies made by Dukaric and Juric (2013) and Vogel et al.

(2016). A thorough investigation was performed analyzing the documentation of cloud

platform tools, in official web-sites and documentations, making possible to update the

information. Thus, these changes represent the latest implementations and capabili-

ties developed by the cloud management tools studied, to introduce new components

and consequently, more flexibility for users.

In addition, as mentioned in previous studies, the “/” character is used to rep-

resent a resource that is not supported or the status is unknown. We also focus on

keeping existing components (blue color), adding the new components (red color). On

the other hand, the word “internal” is used to mean that the corresponding resource

is supported by the tool, but it is unknown which present component is responsible

to manage it. Finally, the word “external” is used when the tool requires a third-part

solution to implement the component.

Resource abstraction layers, according to Dukaric and Juric (2013), comprise

the components most crucial to cloud architecture. First, the compute is responsible

for managing virtual machines (create, terminate and reboot). The storage component

is responsible for providing object storage to the cloud and also for uploading and

downloading VM images in a scalable and redundant way. On the other hand, the

volume component provides persistent block storage volumes (data is not lost when the

instance is rebooted or disconnected), volumes are managed by the instances, in most

cases using Network File System (NFS) and Internet Small Computer System Interface

(iSCSI). Finally, the network provides the ability to manage the network infrastructure

by offering virtual networks, firewalls, DHCP to other components and also the VMs.

Core service layer, is also another important component, which provides pro-

visioning, billing and connection service (BUYYA; VECCHIOLA; SELVI, 2013). The

identity service is in charge to manage the authentication process for users among the

cloud components (compute, storage and image repository). The scheduling compo-

96

nent is responsible to verify the resources available to manage the requests made by

VM instances, ensuring the efficient use of physical resources. The image repository

gives to the user with a catalog that provides virtual disk images required to instantiate

the VMs. The most frequent disks formats used are QCOW2, RAW and VHD. How-

ever, different formats of disks can affect instance performance, and also introduce

some compatibility issues. Charging and billing are used with registration events to

create and present the customer billing information based on the resources used. The

log is used for audit purposes, and must be able to track all cloud operations (security

and performance).

The support layer provides the means for other layers to communicate and

interact (DUKARIC; JURIC, 2013). The message bus acts as a central hub used to

coordinate pass-through messages between different cloud services. The Database

stores all the configuration of the cloud infrastructure, such as VMs, networks, security,

users, etc. Transfer services, as the named suggests, are responsible for transferring

the files among the clusters and the images repository, aiming for the correct deploy-

ment of VMs.

The Management layer specifies the APIs and tools to interact with underlying

services and resources, which are responsible to orchestrate the infrastructure and

brings the highest degrees of agility to the entire architecture (CHANG, 2015). Thus,

resource management is responsible for creating, allocating, suspending and terminat-

ing the VM, managing resources relative to physical hosts. Federation administration

has the challenge and task of reaching and unifying the federation service in existing

cloud services using single sign-on (SSO) mechanisms. Elastic management provides

automatic and dynamic provisioning of resources for the user, increasing according to

their needs with respect to defined policies. User/group management is used to add

or create members with a defined policy and rules for a particular project, it is a way

to define authorizations for a user or group. SLA definition corresponds to the defined

QoS, it is essentially a contract that guarantees services delivered between the con-

97

sumer and a cloud provider. The monitoring component is used to monitor de use of

computational resources by collecting relevant metrics, being an important tool to also

verify the need of investment, some cloud management tools have their own monitor-

ing components, but other monitoring tools, such as Nagios or Ganglia. The reporting

component generate the reports necessary for billing, through detailed usage of ca-

pacity based on system metrics. Incident management addresses the reestablishment

of a partial or complete unavailability of resources offered by the cloud, focused on IT

performance. The power management allows administrators to monitor different levels

of power consumption, and also define policies to make rational use. It is an impor-

tant role, because consumption will direct the impact on the return of investment, and

consequently the cost savings. Lease management enables the user to request and

contract resources for a certain period of time.

Management tools provide the capability to interact with underlying services

and tools to manage the cloud (DUKARIC; JURIC, 2013). The command-line interface

(CLI) gives the administrator a capability to manage the entire cloud environment with

command-line tools, such as shell-based access. The APIs allows access to the cloud

infrastructure using a set of protocols (REST, SOAP), enabling automation process to

manage the cloud environment. The dashboard is the graphical user interface, which

contains a set of cloud management features that give the user the ability to manage

the environment, while respecting the policies applied to their own user (administra-

tor or user). Orchestrator provides a capability to automate resource and processes

management (creation, monitoring, and deployment).

Security layer plays a crucial role in the cloud environment because cloud com-

puting has its own specific characteristics, such as scalability and multi-tenancy, deal-

ing with costumer data in cloud data center. Thus, in according to Mell and Grace

(2011), organizations should be aware of the security issues present in cloud comput-

ing, and that layer must be capable of guarantee, update and maintain high levels of

confidence and transparency for costumers. Thus, the authentication process provides

98

mechanisms such as SSH key pairs, certificates, usernames and passwords, used to

access the cloud infrastructure. The authorization component, provides authority for a

specifics tasks, applied to users. In addition, security groups correspond to the firewall

rules applied to VMs, which can be part of a group with different subnets, and avoiding

visibility to others groups. Single sign-on (SSO) uses the federation service to securely

share identity between other networks by providing interoperability mechanisms for the

authentication process. Security monitoring should be proactive and provide technolo-

gies to detect security threats that can compromise the cloud environment, and also

enforce security policies.

The control layer provides the basic management capabilities for the IaaS

cloud, including support for security policies for access control and data protection

(CHANG, 2015). The SLA enforcement, and SLA monitoring ensures that QoS are

performed by monitoring the required components. The Metering analyses the use of

resources, providing the usage of resources, such as processing, storage, memory,

and network). Policy control, involves policies to manage the security and privacy for

the environment. The notification service is used to send different notifications (fail-

ures, purposes, registration, etc.), to members of the cloud. The orchestration service

provides a catalog of workflows that helps integration and automation process, to man-

ages the cloud infrastructure and other technologies.

The value-added services in according to Dukaric and Juric (2013), are a com-

plimentary layer to the core service, introducing some key features in the analyzed

cloud management tools. Thus, availability zones allow replication and high availabil-

ity in different geographic regions. High Availability (HA) implements mechanisms that

makes possible the redundancy of data among the nodes, with fault tolerance. The

hybrid support allows integration with other cloud systems, such as, amazon or azure,

it is possible to have a heterogeneous environment in order to maintain the efficiency

and availability. The live migration offers the ability to migrate the virtual machine from

one node to another in case of failover, without affecting the running services, transpar-

99

ently. The portability support is intended to enable the cooperation of different cloud

systems, providing portability between different virtualization technologies, including

different disks formats. That is, by using the federation service, the user can migrate

the VM from one cloud technology to another (OpenNebula to Azure). Image contextu-

alization is a resource that the user can add some features that characterize the image

used by the VM, this is useful for providing preconfigured images, including features

such as, DB characterization, network rules, authentication, etc. Finally, the virtual

application support is used for multi-tier applications that use containers, which are

capable of interacting with multiple VMs.

The update of Table 2.4, has shown the increasing effort to make the tools

more flexible given the large number of new technologies introduced in the recent

years. The case that most attracts attention is OpenStack, especially for the different

features introduced in recent years (details of the components are listed in the Open-

Stack section), and new ones are emerging as shown on the official project website,

revealing the intention to make an even more flexible tool. However, the large number

of projects also have different maturity levels which makes the environment complex

and dependent on interaction between them, which can lead to different performance

results or even malfunctioning, being criticized by the community. On the other hand,

we can realize that CloudStack introduced some new support technologies recently,

but was overtaken by the OpenNebula project in terms of flexibility. Finally, it is impor-

tant to emphasize that flexibility is not a parameter to predict “which cloud is best” as

mentioned earlier, being only a reference guide to show the flexibility and the features

offered by open source clouds.

2.2.11 Multi-Tenancy

Multi-tenancy in the cloud environment is defined by Mahmood (2013), as

responsible for running multiple applications, database and hardware infrastructure

among departments or companies, sharing the same central hardware and software

100

infrastructure. Therefore, it is one of the most important features of cloud computing

allowing to maximize the usage of resources by sharing them.

The cloud system architecture was designed to allow resources to be appor-

tioned and shared efficiently between multiple tenants (MAUCH; KUNZE; HILLEN-

BRAND, 2012). Thus, cloud computing offers a propitious environment to deploy di-

verse types of applications and products among the costumers, giving the low cost and

a high availability infrastructure. However, different aspects of clouds require multiple

customers with disparate requirements to be served by a single hardware infrastruc-

ture. Therefore, the virtualization process is responsible to create the virtual infras-

tructure that separates the resources among multiple tenants (BUYYA; BROBERG;

GOSCINSKI, 2010).

The IaaS cloud tool is responsible for manage, implement and enforce the

segregation in all forms of computer resources (compute, networking and storage) be-

tween the instances, thus allowing to isolate the tenants (TELFER, 2016). The Figure

2.23 shows an example of a physical machine from a cloud computing provider, which

shares the same pool of hardware infrastructure to the hosting virtual machines.

Source: Extracted from Ruparelia (2016b)

Figure 2.23: Multi-Tenancy Overview.

Despite the fact that the benefits of the cloud computing are already known

101

by the scientific and enterprise community, and the multi-tenancy is a core techno-

logical approach to create efficiencies in the cloud. The effect between multi-tenancy

demands more research, because of the isolation of each individual user or workload,

plus the difficulty to meet all the applications requirements in a virtualized environment

at the same time, can affect the overall performance of a cloud (MAUCH; KUNZE;

HILLENBRAND, 2012). In addition, Buyya, Broberg and Goscinski (2010) and Carroll,

Kotzé and Merwe (2012) emphasizes that cloud environments are multi-tenancy in na-

ture, and the environment may have performance issues if implemented or maintained

improperly causing data corruption, contamination or unauthorized access.

2.2.12 Parallel Programming Models

With the advent of the multiprocessor system, different parallel programming

models have made it possible to improve overall system performance. Allowing a pro-

cess to perform more than one independent computation at the same time (TANEN-

BAUM; BOS, 2014), (NICHOLS; BUTTLAR; FARRELL, 1996b).

Therefore, as emphasized by Butenhof (1997), the parallel application running

on two processors can achieve almost double the performance compared to a serial

version. However, as the parallelism scales up, more synchronization is required and

there is more chances of lock and memory collisions, resulting in a poor performance.

Thus, according to Amdahl’s law, the level of parallelism is limited by the amount of

serialization required (AMDAHL, 1967).

There are many different classes of parallel hardware and consequently many

different parallel programming models. In this thesis, three main models are described:

distributed-memory (MPI), shared-memory (OpenMP) and the POSIX Threads (Pthreads).

102

2.2.12.1 MPI - Massage Passing Interface

According to Gropp et al. (2014), it is a portable and standard interface for

developing parallel programs using the distributed-memory programming model. It is

used in large scale for parallel applications development, in science and engineering

domains, in all sizes systems. This model idealizes that the programs will be executed

by one or more processes, each of which has its own private address space (CHAP-

MAN; JOST; PAS, 2008).

According to Waku (2012), MPI is easy to use and has high portability. Easy

to use is justified by the use of clearly specified simple interfaces as to their behavior,

use and parameters for operation. The high portability is justified by the fact that with

the use of message passing, it is possible to write programs that will work on machines

of various types, such as distributed memory multiprocessors, workstation networks or

hybrid environments of the most varied types. In the Listings 2.1 (C/C++) and 2.2 (For-

tran), programs are shown that use MPI, representing master/slave communication.

This programs are made by Snir (1998). According to Snir (1998) these codes make a

simple exchange of messages between processes. All MPI calls are procedures and

an additional parameter is used to return the value by the corresponding function. It

can be seen that the Fortran strings have fixed length and are not null-terminated.

1 char msg [2 0] ;
2 i n t myrank , tag = 99;
3 MPI_Status s ta tus ;
4 . . .
5 MPI_Comm_rank (MPI_COMM_WORLD, &myrank) ; /∗ f i n d my rank ∗ /
6 i f (myrank == 0) {
7 s t r cpy (msg , " He l lo there ") ;
8 MPI_Send (msg, s t r l e n (msg) +1 , MPI_CHAR, 1 , tag , MPI_COMM_WORLD) ;
9 } e lse i f (myrank == 1) {

10 MPI_Recv (msg, 20 , MPI_CHAR, 0 , tag , MPI_COMM_WORLD, &s ta tus) ;
11 }

Listing 2.1: MPI implementation in inter-process message exchange (C - C++).
Extracted from Snir (1998).

103

1]
2 CHARACTER∗20 msg
3 INTEGER myrank , i e r r , s ta tus (MPI_STATUS_SIZE)
4 INTEGER tag = 99
5 . . .
6 CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank , i e r r)
7 IF (myrank .EQ. 0) THEN
8 msg = " He l lo there "
9 CALL MPI_SEND(msg, 11 , MPI_CHARACTER, 1 ,

10 tag , MPI_COMM_WORLD, i e r r)
11 ELSE IF (myrank .EQ. 1) THEN
12 CALL MPI_RECV(msg, 20 , MPI_CHARACTER, 0 ,
13 tag , MPI_COMM_WORLD, s ta tus , i e r r)
14 END IF

Listing 2.2: MPI implementation in inter-process message exchange (Fortran).
Extracted from Snir (1998).

The main idea is to allow development of applications that make use of MPI

as a standard programming model, providing interoperability between programs and

consequently increasing their scalability.

2.2.12.2 OpenMP - Open Multi-Processing

According to Chapman, Jost and Pas (2008), it is a shared-memory API, which

is used to facilitate parallel programming. It is suitable for implementations of Symmet-

ric multiprocessing (SMP) architectures.

OpenMP was defined by ARM (Architecture Review Board), with main objec-

tive of proving a common means for programming SMP architectures. Its creators

developed an approach that was easy to learn and implement. The OpenMP API is

designed to allow an incremental approach to an existing code, being part of this pro-

gram parallelized. This model idealizes that programs will be executed on one or more

processors that share some or all of the available memory. The main characteristic of

OpenMP codes is the "pragma" (C/C++) and !$OMP (Fortran) use. They are guide-

lines that must be informed by the programmer, in the region of the code that will be

parallelized.

104

In addition, the OpenMP is not a new programming language. It can be added

to a sequential program in Fortran, C, or C++ to describe how the work should be

shared between threads that will run on different processors or cores. Properly adding

of OpenMP features into a sequential program makes most applications take advan-

tage of shared-memory parallel architectures. Many applications have considerable

parallelism that could be exploited. The success of OpenMP is attributed to some

factors. They are:

• It is strongly intended for structured parallel programming.

• Compared to other languages, it is simple to use.

• It is widely used, being used in many platforms.

• OpenMP is timely.

1 # inc lude < s t d i o . h>
2 # inc lude < s t d l i b . h>
3

4 vo id mxv(i n t m, i n t n , double ∗ r e s t r i c t a ,
5 double ∗ r e s t r i c t b , double ∗ r e s t r i c t c)
6 {
7 i n t i , j ;
8

9 #pragma omp p a r a l l e l f o r d e f a u l t (none) \
10 shared (m, n , a , b , c) p r i v a t e (i , j)
11 f o r (i =0; i <m; i ++)
12 {
13 a [i] = 0 . 0 ;
14 f o r (j =0; j <n ; j ++)
15 a [i] += b [i ∗n+ j]∗ c [j] ;
16 } /∗−− End of omp p a r a l l e l f o r −−∗ /
17 }

Listing 2.3: OpenMP implementation of the matrix times vector product in C. Extracted
from Chapman, Jost and Pas (2008).

The Listing 2.3 is also an example made by the authors Chapman, Jost and

Pas (2008). It describes an OpenMP code in C/C++ language. According to Chapman,

Jost and Pas (2008), a single pragma is sufficient to parallelize the outer loop. It was

105

explicitly specified, for each variable, whether it is shared by all segments or whether

each segment has a particular copy. A comment string is used to clearly mark the end

of the parallel region.

1]
2 subrou t ine mxv(m, n , a , b , c)
3

4 i m p l i c i t none
5

6 i n t e g e r (k ind =4) : : m , n
7 r e a l (k ind =8) : : a (1 :m) , b (1 :m, 1 : n) , c (1 : n)
8 i n t e g e r : : i , j
9

10 !$OMP PARALLEL DO DEFAULT(NONE) &
11 !$OMP SHARED(m, n , a , b , c) PRIVATE(i , j)
12 do i = 1 , m
13 a (i) = 0.0
14 do j = 1 , n
15 a (i) = a (i) + b (i , j) ∗c (j)
16 end do
17 end do
18 !$OMP END PARALLEL DO
19 r e t u r n
20 end subrou t ine mxv

Listing 2.4: OpenMP implementation of the matrix times vector product in Fortran.
Extracted from Chapman, Jost and Pas (2008).

The Listing 2.4 is an example made by the authors Chapman, Jost and Pas

(2008). It describes an OpenMP code in Fortran language. According to Chapman,

Jost and Pas (2008), an OpenMP directive is sufficient to parallelize the outer loop. It

has been explicitly specified for each variable whether it is shared by all threads or if

each thread has a particular copy. The !$ OMP END PARALLEL DO directive to mark

the end of the parallel region.

2.2.12.3 Pthreads - POSIX Threads

POSIX threads (pthreads) is a standard parallel library for UNIX, capable to

achieve a high level of scalability by dividing a program into subtasks whose execu-

106

tion can be interleaved or run in parallel (NICHOLS; BUTTLAR; FARRELL, 1996a),

(TANENBAUM; BOS, 2014). According to Bienia and Li (2009), phtreads has been

used as a threading standard since 1995 and is one of the most commonly used li-

braries for programming shared-memory Unix machines.

Pthreads is commonly used in HPC, being characterized to be a lightweight,

causing a low system overhead compared to the cost of creating and managing pro-

cess, and also offers functions to synchronize threads, (TANENBAUM; BOS, 2014).

Therefore, the Linux kernel can schedule these threads as with any other process

or threads in the system, speeding up performance through parallelism, allowing the

process to be concluded in close to half of time (MUKHEDKAR; VETTATHU; CHIRAM-

MAL, 2016), (CARVER; TAI, 2005).

The POSIX threads standard defines more than 60 functions calls, the main

ones, are listed on table 2.5.

Thread call Description
Pthread_create Create a new thread

Pthread_exit Terminate the calling thread
Pthread_join Wait for a specific thread to exit
Pthread_yield Release the CPU to let another thread run

Pthread_attr_init Create and initialize a thread‘s attribute structure
Pthread_attr_destroy Remove a thread‘s attribute structure

Table 2.5: Main thread function calls.

Source: Extracted from Tanenbaum and Bos (2014).

All Pthreads threads have their own properties, such as identifier, registers,

and attributes, necessary to the thread utilization. However, for a program to take full

advantage of Pthreads, it must be able to perform parallel tasks. An exemple of creating

a thread is listed in the Figure 2.5. The authors Nichols, Buttlar and Farrell (1996a)

shows a creation and termination of a thread. They also argues that the higher the

level of parallelism achieved by a program, the higher it can enhance the performance

and efficiency to do more than one thing at the time.

107

1]
2 # inc lude <pthread . h>
3 # inc lude < s t d i o . h>
4 # inc lude < s t d l i b . h>
5 # def ine NUM_THREADS 5
6

7 vo id ∗ P r i n t H e l l o (vo id ∗ t h read id)
8 {
9 long t i d ;

10 t i d = (long) th read id ;
11 p r i n t f (" He l lo World ! I am, thread #%l d ! \ n " , t i d) ;
12 p th read_ex i t (NULL) ;
13 }
14

15 i n t main (i n t argc , char ∗argv [])
16 {
17 pthread_t threads [NUM_THREADS] ;
18 i n t rc ;
19 long t ;
20 f o r (t =0; t <NUM_THREADS; t ++) {
21 p r i n t f (" In main : c rea t i ng thread %l d \ n " , t) ;
22 rc = pthread_create (& threads [t] , NULL, P r i n tHe l l o , (vo id ∗) t) ;
23 i f (r c) {
24 p r i n t f ("ERROR; r e t u r n code from pthread_create () i s %d \ n " , rc) ;
25 e x i t (−1) ;
26 }
27 }
28

29 /∗ Last t h i ng t h a t main () should do ∗ /
30 p th read_ex i t (NULL) ;
31 }

Listing 2.5: Pthread - Thread creation and termination. Extracted from Nichols, Buttlar
and Farrell (1996a).

However, despite all the benefits introduced by Pthreds implementation, the

overhead cost in threaded code can affect the overall performance. As appointed by

Butenhof (1997), the time it takes to synchronize threads by constantly write the same

memory locations, causes the system spend a lot of time synchronizing the memory

system on processors (overhead). Thus, it is necessary to the programmer design the

code to avoid such problems.

108

2.3 SCIENTIFIC AND ENTERPRISE APPLICATIONS WORKLOAD

As emphasized by Cheveresan et al. (2007), workload is a utilization of a

computer system to perform a representation from resource utilization in determinate

amount of time. The utilization can guide performance optimizations both at the soft-

ware and system configuration level. It can be customized and performed the tests, in

a period of time and repeat them as long as needed. Thus, it is an important way to

represent a behave of a real application.

Business processes inside enterprise fields relies on IT to offer different appli-

cations and softwares (eg., financial analysis, rendering, similarity search, enterprise

backup) (SHROFF, 2010). With the growing diversity of softwares and applications

inside the organizations, the enterprise workloads enable the mimic of this specific

environment and became a natural way to represent and quantify the results.

Scientific workloads are used to simulate a real-world application with mathe-

matical means on a research field. It is characterized by been a parallel jobs, small

bags-of tasks and sometimes by small workflows, comprising most of sequential tasks

(IOSUP; OSTERMANN; YIGITBASI; PRODAN; FAHRINGER; EPEMA, 2011). Such

applications are used on a weather prediction, space exploration, genomic research,

and others. This kind of research, requires a huge processing capability, which is able

to supply the calculation level using a great number of floating point operations.

2.3.1 PARSEC

The Princeton Application Repository for Shared-Memory Computers (PAR-

SEC7 is a benchmark suite composed of multithreaded programs offering a wider va-

riety of applications, (BARROW-WILLIAMS; NICK; FENSCH; CHRISTIAN; MOORE,

2009).

7http://parsec.cs.princeton.edu/index.htm

109

The PARSEC research project started in 2005 and was created to study the

emerging processor architecture at the time, with programs that were not in the HPC

domain. Due the lack of workloads available at the time, the early stages of PARSEC

quickly received attention from the open source community, universities and enter-

prises. Currently at the version 3.0, the PARSEC is one of the most popular benchmark

suite.

Focuses on programs from several applications domains, the suite includes 13

different workloads (Table 2.6). This programs cover different applications domains,

with different models of parallelism and granularity. The benchmark is able to simulate

the behavior of real applications, such as computer vision, video encoding, financial

analytic, animation physics and image processing, (PARSEC, 2017a).

Parallelization Data UsageProgram Application Domain Model Granularity Working Set Sharing Exchange
blackscholes Financial Analysis data-parallel coarse small low low

bodytrack Computer Vision data-parallel medium medium high medium
canneal Engeneering unstructured fine unbounded high high
dedup Enterprise Storage pipeline medium unbounded high high

facesim Animation data-parallel coarse large low medium
ferret Similarity Search pipeline medium ubounded high high

fluidanimate Animation data-parallel fine large low medium
freqmine Data Mining data-parallel medium unbounded high medium
raytrace Rendering data-parallel medium unbounded high low

streamcluster Data Mining data-parallel medium medium low medium
swaptions Financial Analysis data-parallel coarse medium low low

vips Media Processing data-paralel coarse medium low medium
x264 Media Processing pipeline coarse medium high high

Source: Extracted from Bienia (2011)

Table 2.6: Different characteristics of PARSEC benchmarks.

The suit focuses on emerging workloads and was designed to be represen-

tative of next-generation shared-memory programs for chip-multiprocessors (INTEL,

2017b). Furthermore, some benchmarks allow increase the number of threads more

than the number of cores available, as emphasized by Barrow-Williams et al. (2009), it

gives to the operating system an effective manner to schedule the work. Additionally,

some characteristics meet the requirements to this study, they are:

110

• All applications are multithreaded: The parallelism is widely used on science

and enterprise fields, executing multiple programs instructions at same time.

PARSEC is one of few benchmarks that are parallel.

• Emerging workloads: One of the main features from PARSEC is that algorith-

mic structure represents the behavior of applications that is likely to become com-

monly used in the near future.

• Different applications domains: Scientific and enterprise applications do have

their own subcategories, like meteorological and space exploration, they both are

from scientific fields. The suite includes programs which are wide and tries to be

a representative as possible.

The workloads presented on PARSEC are composed of 10 applications and 3

kernels which represent common desktop and server programs (BIENIA, 2011). There

are six input sets for each benchmark:

• Test: A very small input set to verify the minimum level of functionality of the

program.

• Simdev: A very small input set used to check the behavior of real inputs, and

simulation.

• Simsmall, Simmedium and Simlarge: They have different input sizes to sim-

ulate micro-architectural studies. Larger input sets contain bigger workload and

consequently more parallelism.

• Native: The largest workload intended for native execution. Generally used to

simulate a real program behavior, this input set gives us an extended utilization

from computational resources, this allows a better methodology approaches re-

lated to our study.

111

2.3.1.1 Blackscholes

Blackscholes application is original from Intel RMS benchmark. It was merged

on PARSEC project and was chosen to represent the field of analytic PDE (Partial

Differential Equation) solvers. This kind of application is used in computation finance,

which is intended to explore the amount of floating-point calculations a processor can

perform (BIENIA, 2011).

The native input that will be used in our tests has 10.000.000 values options,

which serves as a reference. Initially, Blackscholes stores the portfolio with derivatives

in array, so the data can be replicated if necessary to obtain sufficient derivatives for

the benchmark. The program divides the portfolio into a number of work units equal

to threads and processes them concurrently. Each thread repeats all derivations and

calls a function to compute its price, (PARSEC, 2017b).

2.3.1.2 Bodytrack

The bodytrack simulates the application of computerized vision. The work-

load tracks the 3D pose of an unmarked human body with multiple cameras through

a sequence of images, (PARSEC, 2017c). A filter is used to search for high dimen-

sional spaces that do not assume markers of body movements or restricted move-

ments. Therefore, the alignment is made by collecting samples from the foreground

and edges of the images, and computing them. Thus, the program can recognize the

body position and adds boxes to mark it in parts.

According to Bienia (2011), Bodytrack has a thread pool, and the input images

are loaded using asynchronous I/O. The main thread sends a task to the thread pool

whenever it reaches a parallel kernel. Bodytrack also use tickets to distribute the work-

load among the threads to load balance dynamically. Thus, the program has three

parallel kernels:

112

• Edge detection: Bodytrack find the edge of the image, and then compare to

eliminate false edges.

• Edge smoothing: A filter is applied to smooth the edges. The result is remapped

to produce a map to correlate the distance from the edges. This kernel, has par-

allel phases to image rows and to columns. Calculate particle weights: Computes

particles weights, by evaluating the foreground silhouette and the image edges.

This step requires most computational power.

• Particle resampling: This kernel resizes particles by adding noise. Thus, a new

set of particles is created.

Source: Extracted from Bienia (2011).

Figure 2.24: Bodytrack Structure.

The native input (Figure 2.24) used in our tests simulates 4 cameras, 261

frames, 4.000 particles and 5 annealing layers. The output images contain the exact

location with recognized body and with marks to represent each limb, torso and head.

2.3.1.3 Canneal

The Canneal represents engineering workload, it uses a very aggressive syn-

chronization strategy based on data race. This kernel employs cache-aware simulated

113

annealing (SA) to minimize the routing cost of a chip design. Simulated annealing, is a

thermal dynamic process which consists in raising the temperature of a solid and con-

ducting controlled slow cooling (KIRKPATRICK; GELATT; VECCHI et al., 1983). The

algorithm discards one element during each interaction to reduce the cache capacity

misses, it increases data reuse.

On native input, 15.000 swaps are made per temperature, starting with 2.000◦,

with 2.500.000 netlist elements, and 6.000 temperature steps. The program focuses

on write the final routing cost to the console. Thus, each thread randomly selects

pairs of new elements with a Mersenne Twister (BIENIA, 2011), compute the change

in cost and the actual temperature to decide if a change needs to be made. To avoid

deadlocks, Canneal processes the pointer in the lower memory location first, which

means that is the memory segment that the Linux kernel can directly address.

2.3.1.4 Dedup

Dedup is an application that compresses data by eliminating redundancy in a

process called Data Deduplication. The deduplication method it is commonly used in a

backup system because it achieves a good compression rate, reducing the size of the

data (BIENIA, 2011), benefiting storage and network devices.

Dedup uses five kernels pipeline stages (2.25):

• Coarse-grained fragmentation: Serial stage responsible to read the input stream

from disk, and split up in chunks with coarse-grained fragmentation.

• Fine-grained fragmentation: Parallel stage uses an algorithm to divide the ele-

ments in chunks with fine-grained fragmentation.

• Hash computation: Parallel kernel, used to computes the SHA1 in order to

identify the chunks using a HASH table.

114

• Compression: Is responsible to compress the data blocks in parallel, using an

algorithm to build a global HASH table.

• Assemble output stream: Serial stage responsible to reorder the block stages

using the HASH table and compress the output stream.

Source: Extracted from Bienia (2011).

Figure 2.25: Dedup Structure.

The tests used in the native input, contains several individual files that sum

672MB in total. The compressed data stream can be decompressed to restore the

original input data.

2.3.1.5 Facesim

Facesim is an application that simulates elements for animations. It uses a

model of a human face and in a time sequence to simulate a muscle activation and

calculate a visually realistic animation using underlying physics. Thus, the benchmark

uses a face (Figure 2.26) mesh with 80.598 particles, 372.126 tethrahedra with 100

frames, to create a visually realistic result. The final state of the face is written in

several files with different names (PARSEC, 2017d).

The parallelization employs a static mesh partitioning. All data covered by

nodes belonging to more than one partition is replicated. Each time, partitions process

115

all elements that contain at least one node owned by the particle, but only the results

for nodes which are owned by the partition are written (BIENIA, 2011).

Source: Extracted from Bienia (2011).

Figure 2.26: Facesim Structure.

There are three parallel kernels for its computations:

• Update state: Uses a method to solve the nonlinear equations to find the steady

state of the simulated mesh. This technique simulates the effects such as flesh

deformation.

• Add forces: This module calculates the independent forces of velocity acting

on the simulation mesh. Sequentially, it reads the positions of the vertices and

computes the force contribution to each one of the four nodes.

• Conjugate gradient: At this stage, the kernel uses an algorithm to solve the

linear equation assembled by the previous two modules.

2.3.1.6 Ferret

Ferret is an application that employs a data similarity search such as audio,

images, videos and 3D forms. This benchmark represents a next-generation of search

engines for non-text document data types.

116

Source: Extracted from Bienia (2011).

Figure 2.27: Ferret Structure.

Ferret is parallelized using a six stages model (Figure 2.27, but the first and

the last stages are serials. The intermediate stages are:

• Image segmentation: The image is decomposed using a method to segment

the image into different objects, to find relevant areas.

• Feature extraction: Next, a multidimensional vector stores the color, shape and

area properties in a mathematical description of the segmented image.

• Indexing: This stage searches the image in a database using HASH table to find

a more accurate candidate image.

• Ranking: Computes detailed similarity and orders the images based on these

results.

The similarity search using the native input simulates a queries with 3.500

images consulting a database with 59.695 images to find top 50 images.

2.3.1.7 Fluidanimate

Originally from Intel RMS benchmark, this application uses a Smoothed Par-

ticle Hydrodynamics (SPH) method to simulate an incompressible fluid for interactive

117

animation purposes. This are capable to provide realistically animated fluids, adding

substantial realism to interactive applications, such as virtual surgery simulators or

computer games (Figure 2.28) (MÜLLER; CHARYPAR; GROSS, 2003).

Basically the process involved is a fluid detection and rendering surface, using

five kernels to compute the mathematics involved in the process, which are:

• Rebuild spatial index: The program classifies the spatial structure to explore

proximity information and verify the number of particles to be evaluated.

• Compute densities: Calculate the fluid density at the position of each particle,

by analyzing its proximity.

• Compute forces: Next, the result will be used to compute forces, by evaluating

internal and external forces (viscosity, pressure, gravity) and collisions.

• Handle collisions with scene geometry: Use geometry techniques to update

particle collisions in the scene.

• Update positions of particles: Computes the acceleration of each particle and

updates the position.

In our tests, native input is used, which employs an environment with 500.000

particles, and 500 frames. Finally, the state of the fluid is written at the end of compu-

tations.

2.3.1.8 Freqmine

Freqmine is used to simulate the data mining task for Frequent Itemset Mining

(FIMI), which is very common in relevant areas, such as protein sequences, market

data or log analysis. Its main feature is to find frequent pattern in large database.

Thus, an array version of the Frequent Path Algorithm (FP-growth) is used, which is

118

Source: Extracted from Bienia (2011).

Figure 2.28: Fluidanimate Structure.

a method for mining the complete set of frequent patterns by fragment growth (HAN;

PEI; YIN, 2000). In our tests native input is utilized, which is composed of a collection

of 250.000 HTML web documents.

Freqmine is parallelized with OpenMP and have three parallel kernels:

• Build FP-tree header: Responsible to scan the transactions database and count

the number of occurrences to create a header table for the FP-tree. The FP-tree

will contain the item frequency information.

• Construct prefix tree: This stage has four parallelized loops, which are respon-

sible to perform the second and final scan to build the initial database structure.

• Mine data: This stage has similarities to the previous two kernels, because it

builds a new FP-tree for each recursion step. It uses the previously computed

data structures to mines them and obtain the frequent item set information. Each

thread calls the function independently, so the numbers of recursions are equiv-

alent to the number of active threads.

119

Initially, the FP-growth identifies frequently occurring patterns and stores the

relevant transaction database information in a compact data structure, the FP-tree.

The first step is responsible to construct the header table, by encoding the data to

each branch to represent a frequent itemset in decreasing order of frequency of the

corresponding item. Then, the header table stores the number of occurrences of items

in decreasing order of frequency. The data is crossed and computed, the entry is asso-

ciated with a pointer to a node, which are related on a list. Each node also correlates

the occurrence itemsets from the root to the current node. The last component, is

responsible to lookup table to give all occurrences of items stored in the frequencies.

This can be used during the mining phase to skip some scans, this is one of the key

benefits of this algorithm. Finally, Freqmine provides the results of its computation to

the console.

2.3.1.9 Raytrace

Raytrace is an application that simulates rendering and 3D scenes. The result

is a photorealist image using a shading model that employs global information to cal-

culate intensities of the shadows (WHITTED, 2005). Thus, this technique is commonly

used in real-time animations, such as movies and computer games.

The computational complexity of the algorithm depends on the resolution of the

output image and the scene (WHITTED, 2005). Thus, the native input workload uses

a method that samples the object surfaces (Figure 2.29) and computes the shadows

and the reflected light to render the image which have HDTV resolution (1920 X 1080

pixels).

2.3.1.10 Streamcluster

This kernel is used to simulate the data stream cluster, which represents con-

tinuous incoming data, such as multimedia data, financial transactions and telephone

120

Source: Extracted from Bienia (2011).

Figure 2.29: Raytrace Structure.

records (Streaming-Data Algorithms for High-Quality Clustering). The operation of

stream clustering continuously uses a large amount of data and has to organize with

real-time conditions. Thus, the program spends most of the time evaluating the opening

gain of a new center and the cost that can be saved. This operation uses a parallelism

with static partitioning of data points and the low-dimensional (original data) is mem-

ory bound, and becomes increasingly computationally intensive as the dimensionality

increases.

The parallel function is used to gain computing power, this is a preliminary

solution to compute how much cost can be saved by opening a new center. For every

new one, makes a comparison to analyze the cost to make a new center, or reassigning

from the existing point. If the comparison is advantageous, the results are committed.

Thus, the native has 1.000.000 input points, 200.000 block size points and 128 point

dimensions, 10-20 centers, up to 5.000 intermediate centers allowed (BIENIA, 2011).

121

2.3.1.11 Swaptions

Swaptions utilizes the HJM (Heath-Jarrow-Morton) framework to compute the

evolving interest rate of risk management and equity liability for a pre-defined class of

models. Swaptions utilizes the Monte Carlo (MC) method, which is used to calculate

the numerical probability based on taking massive random samples at a high number

of times. The Figure 2.30, shows an example of the method applied to calculate the

area of a lake.

Source: Extracted from Bienia (2011).

Figure 2.30: Example of Monte Carlo Method used on Swaptions.

The Swaptions workload stores the portfolio in the array, where each entry

corresponds to one derivative. The array is divided into a number of blocks equal to

the number of threads and one block is assigned to each thread. Consequently, the

threads replicate through all the swaptions and call the function for all the entries to

compute the price generation a random HJM path for each MC. Based on the path

that will be generated, it will be computed. The native input has 128 swaptions with

1.000.000 simulations.

122

2.3.1.12 Vips

The benchmark version of Vips is based on VASIRI Image Processing System

(VIPS), which consists in an image processing system for larger images, similar to the

conventional image processing package. However, VIPS can evaluate the image in

parallel approach, meld together the operations, requiring no disc space for intermedi-

ates images and no unnecessary disc IO (CUPITT; MARTINEZ, 1996).

In its functionality, Vips performs an image transformation (common task on

desktop computers), and constructs a transparent multithreaded image (Figure 2.31)

processing pipelines on the fly, which means that the libraries required for the cal-

culations are loaded in one compute resource, and automatically replicated to other

computers resources on demand (TAN; ARZBERGER; KONAGAYA, 2006).

The image process transformation, has 18 stages grouped into the following

kernels:

• Crop: The first step of pipeline, removes 100 pixels from all edges.

• Shrink: Reduces the image by 10%, using bilinear interpolation to compute the

output values.

• Adjust white point and Shadows: VIPS adjust the brightness of the image to

improve the visual quality. Then, a method is applied to the resulting image to

obtain a sharp image.

• Sharpen: When printing the image, a blurring effect occurs, to correct this, a filter

is applied to isolate the high-frequency signal component of the image.

The native input for VIPS uses an image with 18.000 x 18.000 pixels. It com-

putes the image transformation in pipeline and replicates to multiple image regions

123

Source: Extracted from Bienia (2011).

Figure 2.31: Vips Structure.

concurrently. Actual image processing and any I/O is delayed as long as possible, and

the intermediate results are represented in an abstract way. Thus, VIPS uses memory-

mapped I/O to load parts of an input image on demand. After that, the operations are

applied to the image region before the output region is written back to disk (BIENIA,

2011).

2.3.1.13 X264

The x264 is an application based on H.264 (Advanced Video Coding) video

encoder. This benchmark is used to explore and eliminate data redundancy, in or-

der to improve video encoding and decoding time. One of the most commonly used

techniques is the motion compensation, which is used to reduce redundancy between

sequential frames, the result will affect the final compression ratio. There are three

possible ways to compress output frames to be encoded:

• I-Frame: Utilizes the entire image and does not depend on other frames. A

prediction block is made by subtracting the current block before encoding.

124

• P-Frame: Includes only the changed parts of an image form the previous frame.

It is formed by shifting samples from previously encoded frames to compensate

the camera movement.

• B-Frame: Constructs the data from previous frames, using inter prediction with

two compensated motion signals.

The X264 uses a parallel algorithm with pipeline model, which consist in one

stage per input frame. Thus, the number of pipeline stages is equal to the number of

encoder threads in parallel. However, fast video movements can cause delays reducing

the speedup of X264. To compensate this effect, the parallelization needs to execute a

greater number of threads than the number of cores, this allows a better performance.

Source: Extracted from Bienia (2011).

Figure 2.32: X264 Structure.

The video utilized on the benchmark is uncompressed version of Elephants

Dream short film (Figure 2.32), the native input has 1920 x 1080 pixels (HDTV resolu-

tion), with 512 frames.

125

2.3.2 NPB (NAS Parallel Benchmark)

Developed by NASA (National Aeronautics and Space Administration) in the

1990s, NAS (NASA Advanced Supercomputing Division, previously known as Numer-

ical Aerodynamic Simulation Program) Parallel Benchmark8 is a suite of applications

designed to aid performance benchmarking of parallel supercomputers. Derived from

computational fluid dynamics (CFD) applications, these benchmarks consist of five

kernels and three pseudo-applications including new benchmarks such as unstruc-

tured adaptive mesh, parallel I/O, multi-zone applications, and computational grids.

Currently, in version 3.3.1, NPB is one of the most popular benchmark suites that work

with scientific applications (NPB, 2017).

Benchmark Focus Language Version

EP Math Fucntions (Floating point performance) Fortran OpenMP, MPI

IS Network Bandwidth / Memory Bandwidth (Integer performance) C OpenMP, MPI

CG Network Bandwidth / Memory Bandwidth (Irregular Communication) Fortran OpenMP, MPI

MG Memory Bandwidth (Regular communication) Fortran OpenMP, MPI

FT Network Bandwidth / Memory Bandwidth (All to All communication) Fortran OpenMP, MPI

BT Network Bandwidth / Instruction Cache (Floating point performance) Fortran OpenMP, MPI

SP Memory Bandwidth (Floating point performance) Fortran OpenMP, MPI

LU Network Latency / Intruction Cache (Regular communication) Fortran OpenMP, MPI

Source: Extracted from NPB (2017) and Roloff et al. (2012).

Table 2.7: Overview of the eight original NAS benchmarks.

According to (NPB, 2017), the eight original benchmarks mimic the compu-

tational and data movement in CFD applications, in particular each one is created to

test a specific area (Table 2.7). They are divided into five kernels and three pseudo-

applications. The five kernels are used for calculations and computational fluid dynam-

ics (CFD). The three pseudo-applications apply the resolution of a system of nonlinear

partial differential equations, representing the main benchmarks of the computationally-

intensive CFD building block in common use today for the numerical solutions of three-

dimensional equations using finite-volume, finite-difference on structured grids. Both

8https://www.nas.nasa.gov/publications/npb.html

126

are described below.

2.3.2.1 Kernel IS: Integer Sort

Sorts whole numbers using "bucket sort". According to Bailey (2009), the IS

Kernel performs a large integer sort operation, important in "particle method" codes.

It makes tests both integer computation speed and communication performance. In

addition, the same author defines this benchmark as a specific generator of a large

array by a scheme and then sort it. The test of this benchmark is to certify that the

array is in a sorted order.

According to Grün and Hillebrand (1998), the IS kernel does not realy sort a

list of small integer vallues, but it classifies them by assigning each element of the list

a number indicating its position in the ordered list. The benchmark is parameterized

and scalable, that is, there are six classes (Table 2.9) that define the parameters that

control memory consumption and the benchmark runtime. The Figure 2.33 shows the

Integer Sort Specification.

Source: Extracted from Grün and Hillebrand (1998).

Figure 2.33: Integer Sort Specification.

The random numbers for the keys are generated in two steps. First, a linear

congruence method produces uniformly distributed random pseudo-numbers ri using

127

the following recursive algorithm: ro = 314159265, ri+1 = 513 . ri mod 246. Then, the

keys Ki are computed as Ki = 1
4
.
(∑3

k=0 r4i+k
)
.Bmax

246
resulting in a Gaussian distribution

of keys (GRÜN; HILLEBRAND, 1998).

2.3.2.2 Kernel EP: An Embarrassingly Parallel Benchmark

Independent generation of Gaussian values and random variables using the

Polar Marsaglia method. According to Bailey (2009), the EP Kernel provides an esti-

mate of the attainable limits for floating-point performance, that is, processor without

interprocessor communication. The test of this benchmark requires that the sums

agree with reference values for a specified tolerance, and also that the ten counts of

deviates in square annuli agree with reference values.

According to Fernández et al. (2006), the EP kernel measures floating-point

performance by tabulating statistics on pseudo-random data. It displays the simplest

possible communication pattern between processes. There are two main parts to this

benchmark: the random number generator, and the main processing loop that tests

successive pairs of random numbers. The parallelization of the problem is direct: each

member of a group of processors works independently on a subset of the random

numbers and the annuli counts are reported at the end of processing (WHITE; ALUND;

SUNDERAM, 1995).

The Figure 2.34 represents the organization of the benchmark in a flowchart.

Internally to the loop, calculations are present in non-parallelizable loops, which in-

volve the generation of random numbers and the verification of the adequacy of these

numbers according to the acceptance function.

128

Source: Extracted from Pilla (2009).

Figure 2.34: Representation of the EP benchmark in a simplified flowchart.

2.3.2.3 Kernel CG: Conjugate Gradiant

Calculation of matrix values. According to Bailey (2009), a gradient method is

used to compute an approximation to the smallest eigenvalue of a matrix. It is typical

of unstructured grid computations, testing long and irregular communication, using

unstructured matrix vector multiplication. The test of this benchmark is that the value

of the equation, must agree with a reference value for a specified tolerance.

According to Zhang et al. (2005), the CG is a memory intensive benchmark.

It uses the inverse power method to find an estimate of the largest eigenvalue of a

symmetric positive definite sparse matrix with a random pattern of nonzeros. The

inverse power method involves solving a linear system of equation Az = x using the

conjugate gradient method (LI; HUANG; CAMERON, 2008).

The Figure 2.35 shows the main iteration in CG, where "nitter" represent the

129

size of the system, the "λ" represents the different problem sizes and the "ζ" represents

the calculated eigenvalue estimate. All of these parameters are clearly specified in the

Table 2.9.

Source: Extracted from Li, Huang and Cameron (2008).

Figure 2.35: The main iteration in CG benchmark.

According to White, Alund and Sunderam (1995), the primary design issue in

kernel CG is how to store the various work vectors used in the power and conjugate

gradient methods. The operations on these vectors are two dot products, three vector-

vector additions, and one matrix-vector multiply for each of the 25 conjugate gradient

iterations in each of the 10 power method iterations. The NAS choice is to divide a

vector into as many pieces as there are rows of processors, with each processor on a

row holding an identical copy of that piece of the vector as shown in the Figure 2.36.

2.3.2.4 Kernel MG: Multi Grid

Intensive communication for short and long distance memory. According to

Bailey (2009), it is a simplified multigrid calculation. It requires long and structured

communication and short and long distance data communication test. The test of this

benchmark requires that a specified number of iterations must agree with a reference

value to within a specified tolerance.

According to White, Alund and Sunderam (1995), the MG kernel specifies a

130

Source: Extracted from White, Alund and Sunderam (1995).

Figure 2.36: Matrix and vector organization in Kernel CG with nine processors.

Poisson problem ∇2u = v with periodic boundary conditions defined in each class (i.e.,

512 x 512 x 512). v is 0 at all coordinates except in 10 points which are +1.0 and points

which are -1.0.

In addition, the authors White, Alund and Sunderam (1995) emphasized that

any scheme for partitioning data from this problem will involve operations in border re-

gions where a processor must "touch" the points that were assigned to the neighboring

processor. Two schemes are typically used in this type of parallel problem: keep the

border of the neighboring process "in the shadow" along with the schema to update

them before they are outdated; Or requesting the points on demand. The Figure 2.37

illustrates the arrangement of the processors and the communication pattern for the

case of four processors.

According to Frumkin (2005), The MG kernel uses a V-cycle pattern start from

the projection of the finest grade waste for the coarser grades. Then it finds a solution

in the coarser grid. Finally, it raises the solution on the finer grid by an interlaced

sequence of interpolating and smoothing operations (Figure 2.38).

131

Source: Extracted from White, Alund and Sunderam (1995).

Figure 2.37: Kernel MG processor topology and communication standard with four
processors.

Source: Extracted from Frumkin (2005).

Figure 2.38: Multigrid V-cycle pattern.

2.3.2.5 Kernel FT: Fast Fourier Transform

Fourier transform method, using all-to-all communication. According to Bailey

(2009), it is 3-D partial differential equation solved using FFTs, performing the essence

of many "spectral" codes. As a definition, it is a rigorous test of heavy long-distance

communication performance.

In addition, the same author define this benchmark, as a discrete version of

132

the original PDE (Partial Differential Equation), by computing the forward 3-D discrete

Fourier transform (DFT) of the original state array, multiplying the results by exponen-

tials, and then performing reverse 3-D DFT. The DFTs can be quickly evaluated using

a 3-D FFT algorithm. The test of this benchmark is to match the checksum of a subset

of the final array with reference values.

The authors White, Alund and Sunderam (1995), emphasized that FT solves

a discrete form of PDE ∂u(x,t)
∂t

= α∇2u(x, t), x ∈ R3, u ∈ C using the Discrete Fourier

Transform. After 3-D Fourier transformation of each side, this equation becomes ∂u(z,t)
∂t

=

−4απ2|z|2v(z, t) with the initial solution v(z, 0) = vo(z) where vo(z) is the 3-D Fourier

transform of uo(x). The solution of this equations is v(z, t) = e−4απ
2|z|2tv(z, 0) = e−4απ

2|z|2tvo(z)

where v(x, t) is obtained as the inverse 3-D Fourier transform of v. The above is also,

true for the discrete form of the original PDE when the 3-D Discrete Fourier Transform

(DFT) is applied. The serial version of Kernel FT first generates and initial n1xn2xn3

array of complex numbers, U(j, k, l), 0 ≤ j < n1, 0 ≤ k < n2, 0 ≤ l < n3 initialized

with values from a pseudorandom number generator. Then 3-D DFT of U , called V , is

computed using a 3-D FFT. Finally for each t ∈ [1, 6]Wj,k,l(t) = e−4π
2α|j−2+k−2+l−2|tVj,k,l

is computed, where j is defined as j for0 ≤ j < n1/2 and j − n1 for n1/2 ≤ j ≤ n1 and

k and l similarly defined with n2 and n3. The inverse DFT is then applied to obtain the

solution array Xj,k,l.

The DFT 3-D is implemented as 3 scans with a 1-D FFT routine, one in each of

the j, k and l directions and the results are multiplied to form the 3-D DFT. The scans

in the directions j and k can be made on the date initially assigned to each proces-

sor, but for scanning in the direction l, the matrix must first be transposed, involving

communication as shown in Figure 2.39.

133

Source: Extracted from White, Alund and Sunderam (1995).

Figure 2.39: Kernel FT partitioning/communicating with four processors.

2.3.2.6 BT Pseudo-Application: Block Tridiagonal

Tridiagonal blocking algorithm. According to Bailey (2009), it runs a synthetic

CFD benchmark solving multiple independent systems of non-diagonal dominant tridi-

agonal equations with a block size (5 X 5). This kernel exhibits more border parallelism

compared to the other two pseudo-applications.

The author Frumkin (2005), emphasized that BT, SP and LU solve a discretiza-

tion of the Navier-Stokes equation K(uq+1 − uq) = Luq, where u is a five-dimensional

vector of density, moments and energy, K is a discretization of the Navier-Strokes

operator and L is the right-hand site operator. The benchmarks represent three meth-

ods to approximate (or split) K as a product of linear operators. The BT benchmark

splits K into a product of three Block Tridiagonal operators one along each dimension

of the computational mesh, SP uses the Beam and Warming split that involves three

Scalar Pentadiagonal operators interleaved with diagonal matrices of 5x5 blocks and

LU employs a Lower and Upper diagonal splitting.

According to Garcia and Freitas (2015), BT is an essential part of computa-

tional fluid dynamics, solving a synthetic system of nonlinear partial differential equa-

134

tions, which involves dependencies of global data.

Source: Extracted from Wijngaart, Sridharan and Lee (2012).

Figure 2.40: NPB BT multi-partition decomposition and algorithm with nine MPI ranks.

In Figure 2.40 it is showed an example of multipartition decomposition for 9

ranks. In this figure, each rank owns
√

9 (i.e.3) blocks. Blocks of same color belong

to the same rank. Y-solver (sweeps into plane of paper) and z-solver (sweeps from

bottom to top) are executed similarly

In addition, the authors Wijngaart, Sridharan and Lee (2012) emphasized that

BTs workload is derived from a mature CFD (Computational Fluid Dynamics) code

and used in several research centers and the aeronautics industry. It is based on

the algorithm of Implicit Alternate Direction that presents strong dependencies of data

that change periodically during the course of the computation. This requires advanced

parallelization techniques, especially in clusters, which provide a good load balancing,

avoiding an enormous amount of very fine grain communications.

2.3.2.7 SP Pseudo-Application: Scalar Pentadiagonal

Pentidiagonal Algorithm. According to Bailey (2009) it performs a synthetic

CFD problem solving multiple, independent systems of non diagonally dominant, scalar,

pentadiagonal equations. SP and LU involve global data dependencies. According to

Bailey et al. (1991), SP and BT are representative of computations associated with

CFD codes operators.

135

In addition, SP and BT are similar in many ways, with their main difference

being in relation to the ratio of communication to computation.

Source: Extracted from Frumkin (2005).

Figure 2.41: The ADI pattern.

The author Frumkin (2005) emphasized that BT and SP represent the Alterna-

tive Directions Implicit (ADI) pattern. In this pattern, the algorithm is structured in order

to perform iterative solutions of linear systems in the x, y and z directions, 2.41.

2.3.2.8 LU Pseudo-Application: Lower-Upper

Gauss algorithm. According to Bailey (2009), it performs a synthetic compu-

tational fluid dynamics calculation by solving regular, block (5 X 5) lower and upper

triangular systems.

Moreover, the author Pennycook et al. (2011) emphasized that LU code im-

plements a simplified compressible Navier-Strokes equation solver which employs a

Gauss-Seidel relaxation scheme with symmetric successive over-relaxation (SSOR)

to solve linear and discretized equations.

The author Frumkin (2005) emphasized that LU benchmark have the following

matrices:
−1 0 0

0 −1 0

0 0 −1

 and

1 0 0

0 1 0

0 0 1

Thus, LU can be structured as a two-dimensional pipeline or as a hyperplane-based

computation. In the two-dimensional pipeline (Figure2.42), on kth-iteration the compu-

136

tations are performed in each horizontal plane along the diagonal x + y = w, where

w = k − z or w = 3N − k − z depending on whether L or U operator is applied.

Source: Extracted from Frumkin (2005).

Figure 2.42: Seven stages of two-dimensional pipeline for processing points of 3x3x3
lattice.

In the hyperplane version of LU (Figure 2.43), the update of the flow vectors

performed simultaneously at all points of a hyperplane x+ y + z = k.

Source: Extracted from Frumkin (2005).

Figure 2.43: Several stages of processing in the hyperplane algorithm.

2.3.2.9 New benchmarks added to the NPB

According to NPB (2017), the NPB has created other benchmarks to eval-

uate multi-zones, unstructured computation, parallel I/O, and data movement. The

multi-zones versions derived from single-zone pseudo-applications, represented by the

acronyms BT-MZ, SP-MZ and LU-MZ. They are build to explore various levels of paral-

137

lelism in applications and test the effectiveness of multi-level and hybrid parallelization

paradigms and tools.

In addition the author Wijngaart and Haopiang (2003), emphasized that in each

multi-zone version, a logically rectangular discretization mesh is divided into a two-

dimensional horizontal tiling of three-dimensional zones of approximately the same

aggregate size as the original NPB, as showed in Figure 2.44.

Source: Extracted from Wijngaart and Haopiang (2003).

Figure 2.44: Two-dimensional tiling of three-dimensional mesh.

• BT-MZ (Block Tridiagonal - Multi-Zone) There are zones of irregular size in a

problem class, with an increasing number of zones as the problem class grows.

According to Jin and Wijngaart (2003), the number of zones increases with prob-

lem sizes. However, the total mesh is divided in a way that the sizes of the zones

cover a significant range. This is achieved by increasing sizes of successive

zones in a particular coordinate direction of an approximately geometric shape.

• SP-MZ (Scalar Pentadiagonal - Multi-Zone) It has uniform-sized zones in a

problem class, with an increasing number of zones as the problem class grows.

According to Jin and Wijngaart (2003), the overall mesh is divided so that the

zones are identical in sizes. However the number of zones grows as the problem

size grows.

138

• LU-MZ (Lower-Upper - Multi-Zone) It has has irregular-sized zones in a problem

class, with a fixed number of zones for all problem classes. According to Jin and

Wijngaart (2003), the overall mesh is divided in a way that the zones are identical

in size, which makes it easier to balance the parallel application load.

• UA Unstructured Adaptive mesh, dynamic and irregular memory access. Accord-

ing to Feng et al. (2004), this benchmarks provides an standardized method for

evaluating the performance of computer systems when running scientific applica-

tions whose memory access patterns are irregular and constantly changing.

• BT-IO Test of different parallel I/O techniques. According to Wong and Der Wijn-

gaart (2003) this benchmark is based in the BT (Block Tridiagonal) kernel of the

eight original benchmark of NPB. It was created because a new bottleneck be-

came evident in I/O applications. Limitations on I/O performance were due in part

to the fact that application and user developers need data files whose structure

does not depend on the number of processors involved in generating the files. IT

evaluates I/O performance improvements through collective buffering.

• DC Data Cube / DT Data Traffic According to Frumkin and Shabano (2003), both

work with randomly generated data and use trees and a shuffle as data flow

patterns. According to Frumkin (2005), the DC benchmark creates RB tree to

sort tuples from a dataset. The ability of DC to evaluate multiple levels of memory

hierarchy depends on the size of the tree. The tree fits into L1-cache (S class)

and grows beyond main memory (class B). The same author emphasized that DT

benchmark uses quad-trees (black hole and white hole) and the binary shuffle

(Figure 2.45) as the task graphs.

2.3.2.10 GridNPB

Another distribution of NPB is the GridNPB, designed specifically to evaluate

the performance of computational grids. GridNPB is composed by four benchmarks

139

Source: Extracted from Frumkin (2005).

Figure 2.45: DT Shuffle.

that consist in a collection of communicating tasks derived from NPB. They symbolize

distributed applications that typically run on grids. The four benchmarks are described

below:

• ED - Embarrassingly Distributed: According to Wijngaart and Frumkin (2002),

it represents a class called parameter studies, which constitute several indepen-

dent executions of the same program, with different input parameters, (Figure

2.46).

• HC - Helical Chain: According to Wijngaart and Frumkin (2002), it represents

long chains of repeating process, such as a set of flow computations, executed

one after another, (Figure 2.47).

• VP - Visualization Pipeline According to Wijngaart and Frumkin (2002), VP rep-

resents chains of compound process, such as those found in the visualization of

flow solutions as the simulation progress, (Figure 2.48).

• MB - Mixed Bag: According to Wijngaart and Frumkin (2002), MB works with the

sequence of flow computation, processing and visualization (similar to VP), but

140

Source: Extracted from Frumkin (2005).

Figure 2.46: ED - Embarrassingly Distributed pattern.

Source: Extracted from Frumkin (2005).

Figure 2.47: HC - Helical Chain pattern.

focuses on the introduction of asymmetric, (Figure 2.49).

2.3.2.11 Benchmark Rules

According to NPB (2017), even through the NPB benchmark is specified in a

technical document and deployments are usually free to code, some rules were defined

for it. The purpose of these rules was to limit the deployments to "reasonable" code,

similar as used in real scientific applications. The rules are described bellow:

141

Source: Extracted from Frumkin (2005).

Figure 2.48: VP - Visualization Pipeline pattern.

Source: Extracted from Frumkin (2005).

Figure 2.49: MB - Mixed Bag pattern.

• All floating point operations must be performed using 64-bit floating point arith-

metic (at least).

• All benchmarks must be coded in either Fortran, C or Java, with certain approved

extensions.

• One of the three languages should be selected for the entire implementation.

• Any language extension or library routine that is employed in any of the bench-

marks must be supported by the system vendor and available to all users.

142

• Subprograms and library routines not written in Fortran, C or Java may only per-

form certain basic functions.

• All rules apply equally to subroutine calls, language extensions and compiler di-

rectives.

2.3.2.12 Benchmark Classes

According to NPB (2017), the intensities of workloads are classified into classes

(W, S, A, B, C, D and E). This classes are described in the Table 2.8.

Class S Small for quick tests purposes
Class W Workstation Size
Classes A, B, C Standard test problems. Increase about 4X it size from one class to the next.
Classes D, E, F Large test problems. Increase about 16X it size from each of the previous classes.

Source: Extracted from NPB (2017).

Table 2.8: Benchmark Classes of NPB.

The Table 2.9 shows problem sizes and parameters for each class defined in

NPB 3.3. In column, "Benchmark" all benchmarks of version NPB 3.3 are identified. In

the "Parameter" column, the important parameters of each benchmark are identified. In

the columns "Class S", "Class W", "Class A", "Class B", "Class C", "Class D", "Class E",

are represented the values referring to the parameters. Empty cells indicate undefined

problem sizes.

143

Benchmark Parameter Class S Class W Class A Class B Class C Class D Class E

CG

no. of rows 1400 7000 14000 75000 150000 1500000 9000000
no. of nonzeros 7 8 11 13 15 21 26
no. of iterations 15 15 15 75 75 100 100
eigenvalue shift 10 12 20 60 110 500 1500

EP no. of random-number
pairs 224 225 228 230 232 236 240

FT grid size 64 x 64
x 64

128 x 128
x 32

256 x 256
x 128

512 x 256
x 256

512 x 512
x 512

2048 x 1024
x 1024

4096 x 2048
x 2048

no. of iterations 6 6 6 20 20 25 25

IS no. of keys 216 220 223 225 227 231

key max. value 211 216 219 221 223 227

MG grid size 32 x 32
x 32

128 x 128
x 128

256 x 256
x 256

256 x 256
x 256

512 x 512
x 512

1024 x 1024
x 1024

2048 x 2048
x 2048

no. of iterations 4 4 4 20 20 50 50

BT
grid size 12 x 12

x 12
24 x 24

x 24
64 x 64

x 64
102 x 102

x 102
162 x 162

x 162
408 x 408

x 408
1020 x 1020

x 1020
no. of iterations 60 200 200 200 200 250 250

time step 0.01 0.0008 0.0008 0.0003 0.0001 0.00002 0.000004

(BT-IO) write interval 5 5 5 5 5 5 5
Gbytes written 0.0008 0.022 0.42 1.7 6.8 135.8 2122.4

LU
grid size 12 x 12

x 12
33 x 33

x 33
64 x 64

x 64
102 x 102

x 102
162 x 162

x 162
408 x 408

x 408
1020 x 1020

x 1020
no. of iterations 50 300 250 250 250 300 300

time step 0.5 0.0015 2.0 2.0 2.0 1.0 0.5

SP
grid size 12 x 12

x 12
36 x 36

x 36
64 x 64

x 64
102 x 102

x 102
162 x 162

x 162
408 x 408

x 408
1020 x 1020

x 1020
no. of iterations 100 400 400 400 400 500 500

time step 0.015 0.0015 0.0015 0.001 0.00067 0.0003 0.0001

UA

no. of elements 250 700 2400 8800 33500 515000
no. of mortar points 11600 26700 92700 334600 1262100 19500000
levels of refinements 4 5 6 7 8 10

no. of iterations 50 100 200 200 200 250
heat source radius 0.04 0.06 0.076 0.076 0.067 0.046

DC input tuples 103 105 106 107

no. of dimensions 5 10 15 20

Source: Extracted from NPB (2017).

Table 2.9: Problem sizes and parameters for each of the classes defined in NPB 3.3.

CHAPTER3: EXPERIMENTS AND RESULTS

In the following sections, the results obtained in the research will be discussed.

It will be detailed the test environment, methodologies followed, the benchmarks used

to perform the tests, statistical tests of hypotheses. In addition, the related works in the

area will be presented, which were of great importance to acquire knowledge.

3.1 LARCC

The LARCC1 (Laboratory of Advanced Researches for Cloud Computing) as

its name suggests is a laboratory research for evaluation and experiments of cloud

computing and related technologies. The core research in LARCC is about the perfor-

mance of IaaS open source cloud management tools, such as OpenStack, CloudStack

and OpenNebula. The front of the lab is showed in Figure 3.1. Moreover it has as a

line of research the following topics:

• Cloud Computing

Infrastructure as a Service (IaaS).

Platform as a Service (PaaS).

Software as a Service (SaaS).

• Distributed Systems (high performance, replication, high availability and redun-

1http://larcc.setrem.com.br/

145

dancy).

• Network programming (application protocols).

• Energy efficiency for data-center and private cloud.

• Data mining and machine learning for agriculture.

The research group is composed of nine members. Three with a doctoral

degree, two with a master degree, two with a degree in technology and two with a

degree in progress. This group is formed by three universities SETREM 2, PUCRS3

and Unipampa4) which provide human resources for research. In addition, the LARCC

has a collaboration with the companies ABASE5 and Automasul6.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.1: LARCC - Laboratory of Advanced Researches for Cloud Computing.

Additionally, the HiPerCloud7 is developed at LARCC. This project analyses

and compares the clouds infrastructure, identifies behavior patterns of the tools re-

lating them to the characteristics of the apps, creates customizable benchmarks to

the company environment to predict cloud behaviors, identifies possible bottlenecks

proposing efficient solutions and finally attends to proposal of new researches for fu-

ture necessities of the corporate environment.

2http://www.setrem.com.br/
3http://www.pucrs.br/
4http://novoportal.unipampa.edu.br/novoportal/
5http://abase.com.br/
6http://www.automassul.com.br/site
7http://hiperfcloud.setrem.com.br/

146

3.2 RELATED WORKS

In this section is presented the related works that show the research already

done and then a comparative table will be made to discuss the limitations and research

methodologies used in each study or how this influences the proposal of this thesis.

3.2.1 Search Methodology

The entire process for searching related works is represented in the Figure 3.2.

In this process, it was used the search engine from three of the largest and well-known

libraries and a well-known search engine. In addition it was made the search string for

each library and some rules and criteria were used for choosing the specific related

works.

The formal logic expression was (performance and cloud and (nas or parsec)

and (scientific or enterprise) and (application or workload or benchmark) and (char-

acterization or evaluation or experiments or analysis or deployment) and (lxc or kvm)).

The logic description is search for related papers which approach performance of cloud

computing or virtualization through workloads, applications or benchmarks that through

its results can be done characterization or evaluation or experiment or analysis or im-

plementation in IaaS infrastructures or service models in native or virtual environment.

3.2.2 Search process for related work papers

In the next sections is described how the related work papers was searched in

the libraries, criteria, rules, and finally the search strings logic.

147

3.2.2.1 IEEE

In this library, we use your own search engine. First, we enter in the IEEE8

"Advanced Search" option and then in the command search. We checked the box "Full

Text and Metadata" that allows the search in the abstract, title text, index terms and full

text. Next, we created a search string with the main terms related to our search. Thus,

making it possible to find specific related jobs.

3.2.2.2 Google Scholar

In this search engine, we first enter the advanced search in Google Scholar9,

and then in the item "find articles with all the words" we add the search string, the same

one used in the IEEE library. Were shown around 600 results, and articles from the

first 5 pages were chosen.

3.2.2.3 ACM

In this library, we use the specific string to ACM10 environment, first we enter

in the "advanced search" option and then in the option "Select items from" we selected

"The ACM guide and computing literature". Next, in the options "Where", "matches all,

matches any and matches none" "of the following words or phrases:" and then adding

more conditions, we enter item by item of the string. In the end of the page of ACM

there is a option "show query syntax", that shows the full string used.

8http://ieeexplore.ieee.org/Xplore/home.jsp
9https://scholar.google.com.br

10http://dl.acm.org/

148

3.2.2.4 Criteria

To apply parameters related to the search string in libraries and search en-

gines, we’ve created a search criteria, which is defined as; Search terms of the string

in the abstract, title text, indexing terms and full text.

3.2.2.5 Rules

For filtering the papers found we created some exclusion rules, witch help us

to select the specific related work papers.

• The papers must be higher than the year 201111. This is because older ones may

have outdated information.

• Any paper that carries out research on energy efficiency, monitoring, storage

evaluation, cost, green IT, SDN or migration will be discarded, precisely because

this is not a work related to ours.

3.2.3 Search Strings Logic

As is known in the computer environment any research done on the Internet is

conducted through a search string that is never seen by the user side. A search string

is a combination of algorithms with the characters and words searched, which leads to

the search for the correct results. In this work we have created our string to specifically

conduct research on related works.

A search strings have to be created for each specific library because each

uses a different way of searching. The logic of the sequence is the search for articles

that contain the subject performance and cloud (key items), NAS or PARSEC (two
11There are some special cases that have proven to be very important, and need to be added.

149

suite of benchmarks) adding the scientific or business environment in which they must

contain applications, workload or benchmark, and needs to approach characterization,

evaluation, experiment, analysis, or deployment and finally uses LXC or KVM in the

virtualization layer.

Source: Baum, Maliszewski, Dalvan, 2017.

Figure 3.2: Search process for related works.

150

3.2.4 Presentation of Related Works

The paper presented by Vogel et al. (2016) deployed different IaaS tools and

focused on parallel application benchmarking of the scientific domain. The tests were

done using the NAS NPB on KVM instances on three different cloud platforms (Open-

Stack, OpenNebula and CloudStack). The results reveals that runtime among tools

has been similar with the scientific workloads, proving that the tools can host such

applications without compromising performance.

In the case of paper of Felter et al. (2015), the performance of traditional virtual

machines deployments is explored and compared with the Linux containers. Focusing

on the issue of overhead compared to the native environment. It was utilized work-

loads that can stress hardware and network resources using KVM (full virtualization)

and Docker (container). The results reveals that the containers perform equal or bet-

ter than KVM in almost all cases, but both virtualization technologies require an I/O

improvement.

On the other hand, the article of Steinmetz et al. (2012) studies the perfor-

mance of cloud computing platforms from the perspective of IT management using the

Unix benchmark. Two separate clouds (Eucalyptus and OpenStack) were deployed on

identical hardware, to verify which would have the least time to launch a VM instance

(serialized and parallelized). The results showed a variation with different numbers

of VMs that were launched. OpenStack has a much better performance to launch

instance serially (3-6 seconds) compared to Eucalyptus (10-12 seconds). However,

VM parallel launching time reveals that for launching one or two VMs, OpenStack de-

creases performance as a measure of instances were launched, at the time of launch-

ing three or more instances, Eucalyptus performs better.

The study of Barker et al. (2010) evaluates the real-world impact of various

types of background interference, focusing on network issues. A variety of Amazon

151

EC2 features capabilities, technologies and performances from the It were compared.

The results reveal that jitter and the throughput experienced by latency-sensitive appli-

cations have degraded performance varying from resource to resource, especially to

the disk-bound tasks, which can be degraded by nearly by 75%.

The paper Huber et al. (2011) made a generic approach to predict the perfor-

mance overhead of services running on virtualization platforms, such as Citrix XenServer

and VMware. Passmark, SPEC and Iperf were the benchmarks used. The results

showed that in the CPU and memory virtualization performance behavior is similar in

both systems, as well as CPU scalability and overcommitment. However, the results

also indicated that there is a deviation in the I/O virtualization and scheduling. Regard-

ing performance, VMware is better including resource isolation than Citrix XenServer.

The evaluation of hypervisors were also done by Reddy and Rajamani (2014),

different performance tests were conducted in XenServer, ESXi and KVM using SIGAR

Framework, Passmark and Nimbus benchmarks. Utilizing CloudStack, the authors

concluded that KVM needs a significant improvement compared to the other hypervi-

sors, in order to be able to offer better performance.

The research conducted by Gupta and Milojicic (2011) argues that cloud plat-

forms could be feasible to host HPC applications. To investigate, the authors performed

NAS NPB, NAMD and NQueen benchmarks on different cloud platforms (Eucalyptus,

Taub and Open Cirrus). The results reveals that Cloud is an compelling platform for

some applications, specifically for non-communication intensive applications such as

embarrassingly parallel and tree-structured computations up to high processor count

and for communication-intensive applications up to low processor count.

The study of Mauch, Kunze and Hillenbrand (2013) provides an overview of

the current state of high performance cloud computing and describes the underlying

techniques and management methods. They focus on the AWS type following the

152

HPC2 model, presenting a novel approach to using high speed cluster interconnects

such as InfiniBand in a high-performance cloud computing environment.

In addition, the paper of Roloff et al. (2012) conducts a detailed comparison of

HPC applications running on three cloud providers (Amazon EC2, Microsoft Azure and

Rackspace). The analyzed characteristics such as deployment facilities, performance

and cost efficiency were sought and compared with a cluster machines. To do this,

it was utilized OpenMP and MPI implementations of NAS, using XEN, Hyper-V and

OpenStack. The results showed that HPC can run efficiently in the cloud, but the

authors emphasize large differences among cloud providers, suggesting that behavior

and applications types have different performance on the cloud scenary.

The paper of Morabito, Kjällman and Komu (2015) presented a detailed perfor-

mance comparison of traditional hypervisors virtualization and container based. The

experiments used the Y-crucher, NBENCH, Linpack, Bonnie ++, STREAM and Netperf

benchmarks, running on LXC, Docker, OSv and KVM. The results showed that the

containers performed better when compared to the virtual machines. In addition, the

document highlights that the performance of KVM has been improved in recent years,

making it more efficient by reducing the overhead.

The paper presented by Xu et al. (2014) analyzes performance in three cloud

scenarios (single server virtualization, single mega datacenter and multiple geodis-

tributed datacenters). They illustrate representative scenarios, discuss performance

and cost-emphasizing methods, including mitigation techniques for overhead, on Ama-

zon EC2. Finally, the results have brought a broad review and allow us to have a better

understanding of the overload of the VM in IaaS clouds.

The paper of Jiang et al. (2012) studied the behavior of desktop cloud work-

loads and made a comparison evaluating a Xen-based virtualization platform. Desk-

tops configured as a cloud were used to run fourth benchmarks (SPEC CPU2006,

153

TCP-C, PARSEC and CloudSuite). The results demonstrate that there are significantly

different benchmarking features, showing that desktop clouds are inefficient for this

type of workload, with higher cache failure rates, and consequently undermining per-

formance.

Performance evaluation was done by Xavier et al. (2013), performing sev-

eral container-based virtualization experiments (LXC, OpenVZ and Linux-VServer) for

HPC. The LINPACK, STREAM, IOzone, NetPIPE, NPB and IBS benchmarks were

used to compensate performance and insulation by comparing containers with Xen.

The study highlights that HPC will only be able to take advantage of virtualization if the

overhead is reduced, it is also arguing that the containers have almost native hardware

performance, having differences between them in the implementation of resource man-

agement. However, container-based systems are not mature yet because they do not

have better isolation, but if HPC does not require resource sharing, a container-based

can be attractive because of minimal performance overhead.

The article presented by Vogel et al. (2016) compares the OpenNebula, Open-

Stack, and CloudStack tools, assessing their differences in support for flexibility, re-

siliency and performance. The KVM hypervisor is deployed to perform the tests using

intensive workloads, such as LINPACK, STREAM, IOzone, IPerf, and NAS. The study

demonstrated that OpenStack is the most resilient, and CloudStack is the most flexible

cloud for IaaS deployment. In addition, performance experiments showed differences

in performance between tools when performing intensive workloads, including a small

virtualization overhead. Therefore, concluding that private IaaS clouds are a good al-

ternative for hosting scientific applications.

The study by Ogrizović, Car and Kovačić (2014) presented the economic and

technical benefits of running scientific applications in cloud computing, and highlight

some challenges for scientific applications strongly coupled with intensive communi-

cation. The authors argue that cloud computing is a viable environment for low and

154

medium-scale scientific applications that are loosely coupled. It should be noted that

for broad adoption, it is necessary to guarantee high bandwidth, low latency of inter-

connections with adequate isolation of virtualized resources.

The authors Jayasinghe et al. (2014) analyzed a variation in cloud performance

and scalability, using the RUBBoS and Cloudstone benchmarks. The scenario pre-

sented a case where a multi-layered application is migrated from a traditional data-

center to one of the three Clouds IaaS (Amazon EC2, Emulab and Open Cirrus). Also

used in the tests are the KVM, XEN and a commercial hypervisor. The results indicated

that the best-performing configuration in one cloud can become the worst-performing

configuration in another one. In addition, the study also identifies several bottlenecks

at the system level that degrade performance, such as high-context switching and net-

work overhead processing processing. As a consequence, there are significant perfor-

mance variations between the three clouds.

The study of Scheepers (2014) compared the XEN and LXC as well as a dis-

cussion of its operational flexibility. The tests were conducted through the use of a

request made by WordPress and PHP-scripts that are responsible for fetching data

from the database and returning with a response. It was used JMeter to send an

increasing number of concurrent requests until the server runs out of memory. The

results showed better isolation of resources by XEN, but LXC improved performance

as it introduces less overhead.

The study by Sadooghi et al. (2015) evaluates the performance of Amazon

public clouds. Micro benchmarks such as CacheBench, Iperf, ping, tracerout and

HPL were used to measure different instance types and were compared to a non-

virtualized system to better understand the effect of virtualization. The study showed

that in most cases the performance of instances is less than the expected performance

that is claimed by Amazon. In addition, network latency is larger and less stable than

supercomputers. Finally, scientific applications were run on Amazon EC2 and gross

155

performance was compared with FermiCloud, which is well known as a high-end pri-

vate cloud. The results revealed that the scientific applications evaluated in Amazon

instances require a more powerful network capacity and better I/O performance. As a

consequence, some cases are not suitable for hosting scientific applications.

The paper presented by Li, Xie and Zhang (2013), provides a performance

comparison between three open source cloud platforms, such as Nimbus, OpenNebula

and OpenStack in FutureGrid, through the measure of standardized Euclidean distance

similarity. This work evaluates the contrasts of the overhead caused by virtualization to

discover the most suitable platform. In this evaluation, the tests were performed using

the KVM hypervisor and the HPC Challenge (HPCC) benchmark suite. The results

indicate that the OpenStack platform has the best performance for HPC. Therefore, it

is proposed to implement HPC applications on this platform.

The article presented by Kudryavtsev et al. (2012), explores the virtualization

technologies used in the HPC environment. It provides a performance comparison

between the KVM and the Palacios hypervisor, seeking to optimize them in relation to

performance degradation and overhead. The HPC Challenge benchmark suite, NAS

Parallel benchmark suite and the SPEC MPI 2007 benchmark were used to perform the

tests. The results emphasized that KVM provides more stable and predictable results,

while Palacios is much better at granulation tests Fine on a large scale but showing

abnormal performance degradation in some tests.

The study presented by Beserra et al. (2015b) analyzed the performance of

LXC (light virtualization) against KVM (hypervisor-based virtualization) in HPC activi-

ties. The experiment considers CPU and communication performance and uses the

High Performance Linpack (HPL) tool and NetPIPE benchmarks. The purpose of this

experiment was to determine how virtualization affects interprocess communication

performance by considering two variables: first, communication using only intranode

communication mechanisms and, secondly, communications using a physical network

156

interface. In addition, it seeks to answer which scenarios LXC can deliver better perfor-

mance than hypervisor-based virtualization or even the same as native environments

for HPC applications. The results show that in an environment where physical re-

sources are divided into multiple logical spaces, KVM does not perform well and LXC

can be considered the most appropriate solution. Although the container-based so-

lution is a good alternative to overcome the overhead problems coming from virtual-

ization, the experiments also show that some problems especially in relation to LXC

exist. LXC does not provide enough isolation, allowing guest systems to compromise

the system host under certain conditions.

The article presented by Pflanzner et al. (2016), aims to provide test cases

that can measure the performance of a private cloud (OpenStack), helping to find bot-

tlenecks. In this experiment, three cases were examined: concurrency (execution of

concurent scenarios), stress (stress to VMs with Phoronix benchmarks) and disk (var-

ied disk sizes). The hypervisor used was the KVM. The research results reveal that

the stress of a private cloud with targeted workloads introduces a certain degrada-

tion of performance, but the system returns to normal operation after the stressful

load. In addition, failures have been noticed in certain cases, which means that new

cloud deployments need to be improved for certain scenarios. The performance of

general-purpose scenarios in a private cloud provides insight for business stakehold-

ers planning to move to the cloud and provides suggestions where further development

is needed in OpenStack.

The experiment presented by Expósito et al. (2013), provides an evaluation

of high-performance messaging computing middleware in a cloud computing infras-

tructure, Amazon EC2 cluster computing instances, equipped with 10 Gigabit Ether-

net. To analyze the impact of cloud network overhead on representative HPC codes,

a test platform with similar hardware was built. This evaluation consists of a micro-

benchmarking of point-to-point data transfers, both between VM (through 10 Gigabit

Ethernet) and intra-VM (shared memory), at the level of the message passing library

157

and its underlying layer, TCP/IP. Next, we evaluated the significant impact of virtualized

communication overhead on the scalability of representative parallel codes using the

NAS Parallel Benchmarks (NPB) with class B. The result shows a significant impact

that virtualized environments still have on the performance of communications. This

requires more efficient communication middleware support to overcome the current

limitations of the cloud network, such as replacing the TCP/IP stack on high-speed

Ethernet networks.

The article presented by Paradowski, Liu and Yuan (2014), aims to analyze

current performance research with regard to cloud computing at different levels and fill

a gap in research on the specific area of benchmarking the performance of two open

source cloud platforms , OpenStack, and CloudStack. This article used VirtualBox as a

hypervisor and the benchmark used consisted of the time cloud platforms take to create

and delete instances of different sizes. In addition, they evaluated the use of hard

disk and CPU during management operations (creating and deleting instances). The

result can clearly identify that OpenStack performance outperforms CloudStack when

measured against benchmarks. This is evidenced and summarized throughout the

paper tests where not only OpenStack performs tasks in less time than the CloudStack

in all tasks, but also showed a more relative correlation in its results, particularly in

relation to hard disk sizes.

The article presented by Zhang, Lu and Panda (2016), provides a container-

based virtualization performance (Docker) and KVM hypervisor with PCI passthrough

and SR-IOV for HPC on InfiniteBand clusters. In this evaluation, the Graph500, NPB,

LAMMPS and SPEC MPI 2007 benchmarks were used. The methodology used in the

evaluation considered that the KVM was used as the Virtual Machine Monitor (VMM). A

single VM was deployed per node because the PCI passthrough can only have one VM

with the IB device. Each VM has 24 cores, 32 GB of memory and the same operating

system as the host operating system. HCA was attached to VM by PCI passthrough

and SR-IOV technology, respectively, which are presented as ’VM-PT’ and ’VM-SR-

158

IOV’. On the container-based virtualization side, Docker 1.8.2 was deployed as the

mechanism to build and run the Docker containers. To have a fair comparison, we

also performed single container at each node. The results indicate that VM with PCI

passthrought outperforms VM with SR-IOV, while SR-IOV allows efficient sharing of

resources. In general, the container-based solution can deliver better performance

than the hypervisor-based solution (KVM). Compared to native performance, the PCI

passthrough container only incurs up to 9% overhead in HPC applications.

The article presented by Chakthranont et al. (2014), provides a comparison of

performance in a private cloud with CloudStack, specifically measured in a physical

cluster against a virtual cluster. This evaluation used the KVM hypervisor and the Intel

Micro Benchmark (IMB), HPC Challenge (HPCC), OpenMX and Graph 500 bench-

marks. The results shows that almost all MPI collective functions suffer from scalabil-

ity. Fortunately, the negative impact is limited to benchmark application-level programs

where the virtualization overhead is around 5%, even as the number of nodes grows

to 128.

The paper presented by Varghese et al. (2016) explores lightweight cloud

benchmarking techniques - processes that run quickly and can be used in near real-

time to collect metrics from cloud providers and VMs. The exploration of lightweight

benchmarking techniques is facilitated by the development of DocLite - Docker Container-

based Lightweight Benchmarking. DocLite is built with Docker container technology,

which allows a user-defined portion of the VM to be compared. DocLite operates in

two modes, in the first mode, containers are used to compare a small part of the VM

to generate performance ratings. In the second mode, the reference historical data is

used in conjunction with the first mode as a hybrid to generate VM rows. The classifi-

cations generated were evaluated against three high-performance scientific computing

applications. Lmbench was deployed as the benchmarking tool and the cloud plat-

form was the Amazon EC2. The results indicate that the proposed techniques are up

to 91 times faster than the heavyweight technique, which marks the entire VM. It is

159

observed that the first mode can generate scales with more than 90% and 86% accu-

racy for sequential and parallel execution of an application. The hybrid mode improves

the correlation slightly, but the first mode is sufficient for benchmarking cloud VMs.

The paper of Huang et al. (2013), compared a variety of features, technologies and

performance, as well as analyzing the performance of virtual machines for geoscience

applications. The cloud platform chosen by the authors were OpenNebula, Eucalyptus,

and Cloudstack. In addition, XEN and KVM virtualization were used to performing the

benchmarks UBench, Bonnie++, LLCbench, Iperf, to stress CPU, HD, memory and net-

work. The tests show that there are no significant differences in computing resources

between the platforms analyzed, but OpenNebula has the fastest network, while Eu-

calyptus and CloudStack perform better in VM isolation. Moreover, CloudStack has

the fastest cloud management operation (VM deployment, images, snapshots and net-

work). The tests also reveal that the cloud platform is not a good choice for intensive

large-scale communication applications, requiring traditional HPC to be improved for

virtualization environment, in order to achieve a better performance.

The authors Gupta et al. (2013), designed and implemented an HPC-aware

scheduler in Nova Compute, a component of OpenStack, to simultaneously deploy

VMs and also incorporate CloudSim to simulate the cloud environment. The study

benchmarked NPB, NAMD, ChaNGa and Jacobi2d, using KVM hypervisor, to char-

acterize the applications and identify the similarity behavior of the applications. The

studied has characterized the challenges involving VMs and HPC in the cloud, demon-

strating the interference between the platform, and also contributed to performance

improvements to such an environment.

On the other hand, the study of Ghoshal, Canon and Ramakrishnan (2011a),

focused on benchmarking I/O performance over different cloud and HPC platforms,

identifying bottlenecks and performance issues. Therefore, two cloud platforms (Ama-

zon and Magellan test bed), with KVM hypervisor and IOR Timed Benchmarks were

used to perform the tests. The results showed that I/O performance can be one of the

160

main causes for performance issues in virtualized cloud environments, evidencing that

the abstraction layer between the hardware and the VM induces these bottlenecks.

Moreover, the tests made on local storage performs better in comparison with block

storage. The authors appointed that this happens because block storage volumes can

be multi-instance mounted and used as a shared file system, which degrades the per-

formance, especially for latency sensitive applications such as MPI.

The paper of Gupta et al. (2013) proposes a dynamic load balancer for HPC

applications in the cloud, focusing on the interference introduced by multi-tenancy.

The cloud platform used was the OpenStack with KVM hypervisor, to run Stencil2D,

Wave2D and Mol3D benchmarks. Thus, 64 VMs were used to simulate multi-tenancy

and the results discuss the effect of load balancing frequency and different problem

sizes that affect scalability and performance. The load balancer presented by the au-

thors adopts different dynamic variations to use cloud features and presents a proposal

that demonstrates that the performance for such operations can be improved up to

45%.

The study made by Ruiz, Jeanvoine and Nussbaum (2015) evaluates the iso-

lation and performance using container technologies in different Linux kernels, running

HPC workloads (NPB and TAU). Two different tests were performed, one using con-

tainers hosted on the same machines and others hosted on different machines, both to

verify communication between containers. The study does not run the benchmarks on

the cloud platform, focusing only on containers and HPC workloads. The results show

the container usage limits, revealing that oversubscription does not significantly affect

application performance. In addition, container overhead exists, but newer versions

perform better than old ones, revealing that container technology is getting mature as

new versions are released.

The paper Gupta et al. (2013) presented a holistic viewpoint to answer the

question “Why and who should choose cloud for HPC, for what applications, and how

161

should cloud be used for HPC?”. The authors used the Jacobi2, NAMD, ChaNGa,

Sweep 3D, Nqueens benchmarks in KVM, LXC and Bare metal virtualization. For this,

different cloud platforms were used, such as, Eucaliptus, Open Cirrus, Taub, Ranger,

and a public cloud provider. Therefore, the presented test-bed allows to simulate

workloads on physical machines, containers, multi-tenancy and also network perfor-

mance test. The results reveals that interference from virtualization and multi-tenancy

can significantly affect performance-related HPC applications, including those that are

network-sensitive, highlighting the need for low latency requirements for such work-

loads, to avoid performance degradation. Also, in terms of isolation, public clouds are

profitable only on small-scale HPC workloads.

Assuming that the cloud computing is suitable for some HPC applications, the

study made by Gupta and Kale (2013), compares the cost-benefit ratio of the cloud to

typical dedicated HPC platforms to propose a technique for cloud providers to improve

their business. Therefore, the tests were done on the Open Cirrus testbed to simulate

the cloud environment, in the HP Lab Site and scientific applications NPB, ChaNGa,

Charm++ were benchmarked on KVM virtualization. Through the characterization of

the applications running, a workload was modified for better adapt to cloud computing

(HPC-aware) and also the opposite, that is, modifications were made in the cloud to

better suit HPC (HPC cloud-aware). It has used heuristics to analyze and select a suit-

able platform for each specific workload, and propose a dynamic load balancing. The

results demonstrate that techniques improves performance, throughput and reduces

the cost. Thus, demonstrating that HPC performance can be significantly improved to

run in the cloud environment.

The authors Zhou et al. (2013) identify and analyze CPU scheduling problems

in hypervisors, and propose a scheduling algorithm (Poris), and also consider syn-

chronization problems and real-time constraints. They used two machines with differ-

ent configurations, to evaluate STREAM (Non-real-time workloads), PARSEC, Media

Player and MyConnection server (VOIP). These benchmarks were run on the Xen hy-

162

pervisor to design parallel soft real-time scheduling algorithm, and Poris that treats VMs

as non-real-time. The paper identified and analyzed scheduling problems in virtual ma-

chine monitor (VMM), and the results reveals that Poris can improve the performance

of parallel soft real-time applications, media player and shortens the execution time of

PARSEC.

The paper of Mulerikkal and Sastri (2015) made a comparative study, focus-

ing on the complexity of implementation, stability, and performance of OpenStack and

CloudStack, using benchmarks Unixbench and Bonnie++. Clouds were deployed in

the same machine configurations to characterize the complexities of implementations

and conduct a performance evaluation. The results showed that OpenStack outper-

forms CloudStack in most scenarios in a single node environment, has overall better

stability, but installation is more complex. In addition, the authors have suggested that

OpenStack is more attractive because it has the most community support and business

initiatives.

The paper of Xavier et al. (2015) analyses the performance interference suf-

fered by disk-intensive workloads on container-based clouds. To run the experiments,

Swingbench and the Sysbench benchmarks were used in Oracle and MySQL databases.

Tests were conducted on the OpenStack platform, with LXC and KVM virtualization

technologies, on two identical Dell PowerEdge R810 machines. The results showed

that LXC does not provide complete isolation of resources like KVM, inducing degra-

dation of performance in certain disk-intensive workloads. In addition, the authors

mentioned that the container-based system is note mature yet to this type of intensive

workloads, and it is a good alternative implement different workloads types, especially

I/O and CPU-intensive to reduces the interferences, instead I/O and memory intensive

workloads.

The authors Evoy, Mury and Schulze (2014) made a study of scientific applica-

tions in virtual clusters by analyzing how different VM deployments affects the perfor-

163

mance of parallel applications that uses distributed memory. It was utilized a software

for definition and installation of virtual clusters, called VALPA, which provide the nec-

essary environment to simulate the effect of the topology and VM size, and perform

the systematic execution of the virtual clusters. The benchmark used was the Parpac

responsible for the characterization of parallel MPI applications, in KVM virtualization.

The main findings are that virtual core mappings and VM spreading can have signifi-

cant impact on performance, and also the study provided a deployment guideline that

can increase the performance about 6-11% of one VM per node.

An extended examination of the feasibility, performance and scalability of the

scientific and engineering applications was made by the authors Saini et al. (2012).

The study compares Nebula performance using KVM virtualization with HPC NASA’s

Pleiades, using the Network Benchmark (NUTTCP), HPC Challenge Benchmarks (HPCC),

MPI Function Benchmarks (MFB), I/O Benchmark Sequential Read/Write (SRW), NPB,

Overflow, CART3D, USM3D, MITgcm (MIT General Circulation Model) and also investi-

gating the performance of virtIO and jumbo frames. The results indicate that in Nebula,

virtIO and jumbo frames improve network bandwidth in 5 times, but there is a significant

overhead of virtualization layer (10-20%), and the write performance is 25 times infe-

rior compared to the native environment. In addition, latency for short MPI messages

is very high, and the overall performance is 15% to 48% lower than HPC Pleiades. The

study also contributes to quantify virtualization overhead, analyze the impact of virtu-

alization, I/O and jumbo frames on performance, helping to identify the limiting factors

in the cloud platform.

The paper of Kerbyson et al. (2014) made a performance analysis of Cray

XT/XE, IBM Blue Gene and systems using InfiniBand, therefore three architectures

for high performance computing were used. The impact of the operating system was

analyzed in each core using the P-SNAP benchmark as reference, for memory was

used the STREAM benchmark and also four applications (DNS3D, MiLC, GTC, and

Nek-Bone) to examine the network performance. The analysis brings an individual

164

characterization of each system using the proposed applications and benchmarks, and

also made a quantification of the performance lost in each system caused by inter-job

interference.

The study performed by Mehrotra et al. (2012), compared the performance

characteristics of Amazon EC2 HPC instances with NASA’s Pleiades supercomputer.

The NPB (NAS Parallel Benchmarks) was used along with four scale applications to

represent that are currently used by NASA scientists and engineers. The results re-

veals that while Amazon has made great strides in offering HPC resources, the results

were much lower compared to the Pleiades. The authors highlights that for scientists

and engineers, the cloud systems such as presented, do not provide the environment

they require.

A performance evaluation of NPB on intel Xeon Phi processor was performed

by Ramachandran et al. (2013), comparing the execution time with the traditional Intel

Xeon processor, using the Intel Parallel Studio XE 2013 and V Tune Amplifier. The

results indicate high memory latency of Xeon Phi, caused by the inefficiency of Gather-

Scatter instructions. In addition, some common issues that can lead to bottlenecks

from both processors have been identified.

The authors Leite et al. (2012) present a study on technologies for cloud com-

puting focused on virtual machines performance. The tests were conducted using the

Phoronix Test Suite to verify the virtualization overhead and performance issues be-

tween Xen and KVM. The results reveals that KVM achieves the best responsive time

and performance is better.

The study of Campos et al. (2015) characterizes the performance instantiation

of VMs in the Eucalyptus private cloud, thus focusing on the elasticity. The authors de-

veloped a script to instantiate the VMs repeatedly one time after another and measure

the times of each instantiation phase, considering different sizes of virtual machine im-

165

ages as well as cache. The experiments were only created on the front-end node with

the argument that VM instantiation is a process involving this particular node where the

VM is allocated. The results show that the cache has a significant impact on instanti-

ation performance (45,07%), followed by machine image (26,54%) and VM type with

1,05%.

A theoretical performance model for predicting the performance of parallel ap-

plications was presented by Hong et al. (2014), and tests were done using different

virtual machines scheduling on KVM, Xen and VMware. The authors developed a mi-

cro benchmark to measure the overhead and to evaluate the predicted execution time

of a parallel program was used the NPB. Thus, for experiments a target VM executing

each child benchmark was performed individually on hypervisors. The results help to

characterize the performance of individual NAS workloads and specially the proposed

model could predict the performance of parallel applications in various scheduling poli-

cies.

A performance evaluation was performed by Hashimoto and Aida (2012) focus-

ing on applications programs running on virtual machines. The authors benchmarked

NPB, MySQL and Sysbench by running two application programs simultaneously to

evaluate performance in each application. The experiments results indicate interfer-

ence among VMs executing two HPC applications on the physical server. However,

they can mitigate the interference effect by selecting HPC applications that require low

resources, such as LU with EP or IS.

An in-depth study was conducted to analyze performance degradation in virtu-

alized environment by Nikounia and Mohammadi (2015). The authors have configured

four VMs using KVM virtualization, and also considering overcommitment, which is a

practice adopted by IaaS cloud providers to allocate more than one vCPU per each

physical core. Thus, VMs ran 12 Parsec benchmark applications simulating multi-

tenancy to verify interference. The results reveals that performance degradation in the

166

virtualized environment presented can be up to 16x in some cases. The main factors

that led to poor performance were: blindness of hypervisors scheduler, cache con-

tentions, context switch decisions and the lack of special instructions such as SSE,

which is not ported to the guest OS by the hypervisor.

The main goal of the authors Coutinho, Paillard and Souza (2014) was to

demonstrate the feasibility of using a local cluster built in a private cloud for HPC, com-

paring with applications running in real HPC environment. For this, the private cloud

chosen for the experiments was OpenNebula and the KVM virtualization was used to

instantiate the VMs. The experiments utilized the Intel MPI benchmark as well as MPI-

based bioinformatics workloads, such as mpiBlast and ClustalW-MPI. The results were

favorable to the utilization of scientific applications analyzed in cloud computing, and

also the study helps to characterize the environment.

The aim of study conducted by Zhang, Lu and K. (2016) is to characterize

the performance of two virtualization solutions (KVM and Docker) and two virtualized

I/O technologies (PCI passthrough and SR-IOV) using infiniband. For this, it was uti-

lized the Graph500, NPB, LAMMPS and SPEC MPI 2007 benchmarks, running on

Chameleon cloud technology. The tests results showed that the container-based so-

lution and PCI passthrough, performs better than the hypervisor-based solution and

SR-IOV.

The paper of Beserra, Endo and Barreto (2016) investigates which scenarios

LXC can perform better than KVM in relation to I/O operations. The fs test was used

as a benchmark and executed in a scenary with and without communication between

processes to make a comparison. The results reveals that LXC offers a better per-

formance than KVM in I/O-bound applications, and also in shared resources among

multiple abstractions hosted on the same host.

NAS Parallel Benchmarks was used by the authors Okada, Goldman and Cav-

167

alheiro (2016) to estimate the performance of actual HPC applications in the cloud,

based on their communication characteristics. They compared execution behavior in

Google Compute Engine, OpenStack using KVM virtualization and a NUMA multipro-

cessor system using LXC container. The authors conclude that HPC users should

use the appropriate number of vCPUs on each VM, avoiding the overcommitment of

resources because application performance may be affected by scheduler and Hyper-

Threading issues.

168

3.2.5 Analysis and Comparison of Related Work

Name Cloud Platform Virtualization Benchmarks
CloudStack OpenStack OpenNebula Other KVM LXC Other NPB PARSEC Other

Vogel et al. (2016) X X X X X
Felter et al. (2015) X X
Steinmetz et al. (2012) X X X
Barker et al. (2010) X X
Huber et al. (2011) X X X
Reddy and Rajamani (2014) X X X X
Gupta and Milojicic (2011) X X
Mauch, Kunze and Hillenbrand (2013) X
Roloff et al. (2012) X X X
Morabito, Kjällman and Komu (2015) X X X X
Xu et al. (2014) X
Jiang et al. (2012) X X X
Xavier et al. (2013) X X X
Vogel et al. (2016) X X X X X X
Ogrizović, Car and Kovačić (2014)
Jayasinghe et al. (2014) X X X X
Scheepers (2014) X X X
Sadooghi et al. (2015) X X X
Li, Xie and Zhang (2013) X X X X X
Kudryavtsev et al. (2012) X X X X
Beserra et al. (2015b) X X X
Pflanzner et al. (2016) X X X
Expósito et al. (2013) X X X
Paradowski, Liu and Yuan (2014) X X X X
Zhang, Lu and Panda (2016) X X X X
Chakthranont et al. (2014) X X X
Varghese et al. (2016) X X X X

Source: Baum, Maliszewski, Griebler, 2017.

Table 3.1: Comparison and contrast with Existing Studies 1.

169

Name Cloud Platform Virtualization Benchmarks
CloudStack OpenStack OpenNebula Other KVM LXC Other NPB PARSEC Other

Huang et al. (2013) X X X X X X
Gupta et al. (2013) X X X X
Ghoshal, Canon and Ramakrishnan (2011a) X X X
Gupta et al. (2013) X X X
Ruiz, Jeanvoine and Nussbaum (2015) X X X X
Gupta et al. (2013) X X X X X
Gupta and Kale (2013) X X X X
Zhou et al. (2013) X X X
Mulerikkal and Sastri (2015) X X X
Xavier et al. (2015) X X X X
Evoy, Mury and Schulze (2014) X X
Saini et al. (2012) X X X X
Kerbyson et al. (2014) X X X
Mehrotra et al. (2012) X X
Ramachandran et al. (2013) X
Leite et al. (2012) X X X
Campos et al. (2015) X X
Hong et al. (2014) X X X X
Hashimoto and Aida (2012) X X
Nikounia and Mohammadi (2015) X X
Coutinho, Paillard and Souza (2014) X X X
Zhang, Lu and K. (2016) X X X X
Beserra, Endo and Barreto (2016) X X X
Okada, Goldman and Cavalheiro (2016) X X X X
Our work X X X X X X X X

Source: Baum, Maliszewski, Griebler, 2017.

Table 3.2: Comparison and contrast with Existing Studies 2.

170

3.2.6 Related Works Discussion

Through the related works presented, it is possible to realize that there is an

effort from the scientific community involved in researching and evaluating the different

technologies that compose the cloud computing. Not all technologies are entirely new,

but they are the result of combinations of features and resources that can provide this

deployment, as is the case of containers. In this case, it is hot topic and it is a technol-

ogy that is still evolving and requires more research because it can produce evidentially

good results, but at the cost of the others. This lightweight virtualization brought by the

containers, has made companies like VMWare and Microsoft improve their technology

to compete fairly in this fast-growing market, forcing those companies to launch their

own container technologies. With one eye in this market too, the Canonical improves

the LXC releasing the LXD, which is a daemon that brings new features to the LXC,

including the possibility to live migrate VMs and more scalable12.

This is a multi-millionaire market, and by all means, probably more improve-

ments in the current technologies will appear sooner or later. In addition, there is a

major community effort dedicated to characterize and search for the best technology

for each cloud scenario. Moreover, the domain of HPC applications frequently used

in the scientific and enterprise fields, often requires prohibitive financial investments to

deploy a supercomputer, so these fields demand further research to prove the viability

required for applications to be ported to the cloud without compromising performance,

representing a financially sustainable option.

However, as it can be seen in the Tables 3.1 and 3.2, there is still research

needed in this area to meet scientific and enterprise needs. The majority of the studies

only comprehends the cloud deployment using one instance and focus to evaluate the

differences between virtualization technologies by applying a limited number of work-

loads. This is harmful because cloud computing is a complex environment that focuses

12https://linuxcontainers.org/lxd/introduction/

171

on shared resources and ignoring this fact and especially, adding more instances, can

increase the concurrency for resources between users and lead to a poor experience.

This is the case of the proposed multi-tenancy environment, where instances are de-

ployed and workloads are used to simulate noisy neighbors that can affect the appli-

cations behavior in others tenants. Unfortunately, there is a limited number of papers

focused on this needs, which is crucial to the success of cloud deployment.

In addition, another point that is usually overlooked is the fact that cloud com-

puting uses some underlying technologies that can also affect the applications perfor-

mance. One example is the utilization of compute node responsible for hosting the

instantiated users, which could introduce, some performance issues in relation to the

communication with the front-end node. Therefore, an extended research is necessary

to avoid such problems.

In this work, we seek to characterize a diverse number of applications of the

scientific and enterprise fields, which we believe best represent these domains. By ex-

posing these workloads into the virtualized cloud environment using two different virtu-

alization technologies, we contrast to the others works by adding the multi-tenancy en-

vironment, as well as running applications in the multi-node cloud configuration, which

differently characterize the environment. Thus, by creating this complex cloud environ-

ment, we expect to contribute to the others studies in the area.

3.3 EXPERIMENT PLAN

This research intends to investigate the applications performance in the virtual-

ized cloud computing environment, to do this, is important to configure the experiments

that are able to simulate the production environment. This is necessary because many

different technologies and features are involved, which can lead to different results.

Thus, in order to deliver more accurate results, the experiment plan is designed to de-

fine parameters to set up the cloud environment, resource provisioning and Instantiable

172

VMs that will host the applications.

Therefore, the tests were performed in the LARCC at SETREM, using Cloud-

Stack 4.8 as cloud platform tool, the main technologies and features are best described

in Section 2.2.9.1. The cloud used is composed of four server computers with the

same configuration, running Ubuntu 14 OS on Intel Xeon X5560 processor, 24GB

RAM (1333MHz), Sata II storage disk and gigabit network on each node. The cloud

structure is composed of the front-end node (responsible for cloud administration) and

three computing nodes (responsible for running the experiments). The primary and

secondary storages are mounted on the front-end node and use the NFS protocol to

communicate and share resources between nodes, being responsible for storing the

VM images, templates and SO images.

As mentioned before, the native environment uses Linux Ubuntu 14 installed

on respective compute node as well as the VMs offered by virtualization technologies

managed by CloudStack. In addition, it is important to highlight that, among other

things, CloudStack is responsible for providing the environment conductive to virtu-

alization technologies, managing the allocation of resources used by LXC and KVM

based-clouds, that is, whenever a cloud is deployed, a compute node will be desig-

nated to provide such virtualization technology. This means that a computer host can

only provide one type of virtualization at the moment, so the tests were performed us-

ing one virtualization technology and upon completion of the tests, the host became

available to deploy another virtualization technology.

To characterize the applications performance, the first step is to know how they

behave in the native environment by benchmarking them. Making possible to compare

with different virtualization technologies. Therefore, in order to not interfere with the

proposed test scenario, we used a program13 to trace the use of hardware, submit-

ting the execution of the applications in a specific scenario mounted for monitoring

13https://github.com/dalvangriebler/upl.git

173

purposes only, collecting relevant information for analyses. Thus, the memory usage,

cache miss, core load and disk I/O data were collected from the 22 applications (9 from

NAS and 13 from PARSEC). Moreover, it serves as a baseline not only to compare with

the virtualized cloud environments, but also to characterize performance by scheduling

threads.

Although the intention was to represent IaaS cloud behavior in the production

environment, we avoid adopting the overcommitment practice adopted by some cloud

providers. Overcommitment in according with Nikounia and Mohammadi (2015) and

Huber et al. (2011), is a practice used to provide more resources to users than actually

exists, such as a cloud provider that offer 16 vCPUs among the users but in fact it has

only 8 vCPUs. In according with Mukhedkar, Vettathu and Chirammal (2016), there is

nothing wrong with this practice, even though it may provide better use of resources,

but in certain cases performance could be significantly compromised. Therefore, we

assume that the cloud provider has the exact service provision at disposal.

Different users configuration was used to create an even more realistic en-

vironment. In fact, we perform experiments combining a total of four users, running

the same and different applications among them, in order to simulate the concurrency

on the multi-tenancy environment. This was made possible by configuring different

service offerings in CloudStack, so the hardware resources from the compute node

were splited between running users. However, in the case of native environment the

hardware resources were not divided as was done in virtualized, instead we created

four users, then the performance could serve as a baseline, facilitating the comparison

among the studied environments.

The execution time of an application may vary for many reasons, for example,

one instance can complete its tests after another, and thereby release hardware re-

sources before the another. In order to mitigate the variation of runtime and give more

confidence to the experiments, the tests were performed 15 times on each instance,

174

Figure 3.3: Physical environment

and average running time of the first 10 executions were extracted. Another care has

been taken in the procedures, we avoid repeatedly executing the same applications

to prevent the benefit of caching. Therefore, we have developed a script to execute

the workloads in a sequence by scheduling from one to eight threads, thus all appli-

cations initially run with one thread and, after the one-thread execution is finished, the

second-thread execution is started, and so until it reaches eight threads.

In all VMs and containers versions, as well as the native environment, the

latest stable versions of the benchmarks were downloaded from the official project

developer pages. So, PARSEC 3.0 and NPB 3.3.1 versions were used. Thus, node 2

was responsible for running the PARSEC experiments and the node 4 was chosen to

perform NPB experiments. Unfortunately, the compute node 3 has been deactivated

by mal functioning due to sudden power loss during the initial stages of the tests and

cannot be repaired. The physical environment is also shown in the Figure 3.3.

Finally, in order to better characterize and discuss the results, a deep inves-

tigation was conducted based on cited paper and books that served as a reference.

175

However, it is important to highlight that, despite the fact that many referenced papers

use the same applications suites, they did not perform their tests using dedicated com-

puting nodes, neither multi-tenancy users that are typically offered by a cloud provider.

Therefore, not all answers were found in the researched literature and many conclu-

sions are derived from our experience and knowledge acquired so far.

3.3.1 Enterprise Applications

The PARSEC benchmarks suite was used to represent real-world applications

used in many areas, such as computer vision, backup, similarity search and data min-

ing, which are best described in Section 2.3.1. Then, in order to have a more realistic

experiment, all applications ran using their native input, which has larger working sets

and represents the full workload operation. Thus, we benchmarked the applications

individually in the native environment by increasing the threads, what makes it pos-

sible to analyze the behavior of each individual application. Therefore, graphs with

performance characterization of the main hardware resources used were plotted.

All applications, except for Freqmine, were run using their PThreads implemen-

tation because it is a frequently used parallel library in the HPC domain and offers a

good level of parallelism with relatively low overhead. Freqmine requires the OpenMP

parallelization model due to the algorithmic structure present in this application.

In the case of application Fluidanimate, we decided to omit it from our tests

because, according to Southern and Renau (2016) and Bhadauria, Weaver and Mc-

Kee (2009) the non-power-of-two threads configurations are unsupported. Similarly, it

occurs with the Facesim workload on the fifth and seventh threads, but in this case we

have decided to keep this application and only omitting the problematics threads.

176

3.3.2 Performance Characterization

The workloads presented in the Parsec benchmark suite are from different

areas, therefore they have different algorithmic structure and also different hardware

needs, so they are expected to behave differently from each other. Therefore, to better

discuss the results, a trace application was used for monitoring purposes in a sepa-

rated native scenario to characterize the performance without the virtualization over-

head. The results will be discussed below.

3.3.2.1 Core Load

The Figure 3.4 represent the core load utilization of eight CPU cores (four phys-

ical and four logical) offered by the Intel Xeon X5560 processor. This is an extremely

important test so we can better understand the applications stages and correlate with

the CPU load. As a consequence, therefore, we can also realize the specific charac-

teristic of the applications, scheduling in eight threads. The first detail we can realize

is that not all applications are CPU-bound, this became clear when all 8 threads are

used. Not all core load is used as in the case of Bodytrack (3.4(b)), Canneal (3.4(c)),

Dedup(3.4(d)) and Facesim (3.4(e)). The other applications have high CPU demand

and have spent almost the entire application time using full processor capacity.

It is also important to note that in all applications as the number of threads

increases, the execution time is also improved. However, in some cases, a small dif-

ference is noticed, such as the case of Bodytrack (3.4(b)), Canneal (3.4(c)), Dedup

(3.4(d)), Facesim (3.4(e)) and Raytrace (3.4(h)), this is because not all stages of these

applications are fully parallelized and adding more threads does not improve perfor-

mance, especially when the application has some serial stages, incurring dependency

on a segment (BIENIA, 2011). In addition, threads are mainly affected due to memory

latency or synchronization, causing them to stall, which leads to performance bottle-

necks (BHADAURIA; WEAVER; MCKEE, 2009). Dedup (3.4(d)) has an interesting

177

case in the fifth thread, we can notice that the CPU0 line acts on serial part of the

program and the others cores are waiting because they are dependent for this job,

occurring a bottleneck (NAVARRO; ASENJO; TABIK; CASCAVAL, 2009).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Blackscholes

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Bodytrack

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Canneal

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 12 24 36 48 60 72 84 96 108

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Dedup

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 12 24 36 48 60 72 84 96 108 120 132 144

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Facesim

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(e)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Ferret

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(f)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 30 60 90 120 150 180 210

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Freqmine

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(g)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Raytrace

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(h)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Streamcluster

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(i)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200 220

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Swaptions

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(j)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 40 80 120 160 200 240 280 320 360 400

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

Vips

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(k)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 40 80 120 160 200 240 280 320 360

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

x264

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.4: Performance Characterization of Enterprise Applications (Core Load).

178

3.3.2.2 Memory Usage

The node configuration has 24GB of RAM, so a fact that requires attention

is that all applications use almost the same amount of memory, varying from 4 to

4,2GB. Although the expressive variations in the plotted graphs (Figure 3.5), the scale

is represented in order of Kilobytes, which in this case the variance is irrelevant, being

little significant for the overall performance. In addition, Bienia (2011) and Bhadauria,

Weaver and McKee (2009) highlights that Parsec applications are more sensitive to

memory latency and bandwidth than the amount of memory.

However, it is expected in memory usage, that workloads that demonstrate

fluctuations, the more threads are added, the greater the level of parallelism and as a

consequence, will also increase the memory utilization. As we can see in the Figure

3.5, some applications reduce the memory usage when scaling, so a further investiga-

tion it is necessary to comprehend this behavior.

3.3.2.3 Disk I/O

The Figure 3.6 shows the I/O disk usage of the twelve Parsec applications

in the native environment. The trace application was used to capture the read and

write disk operations. It gives a better insight into identifying the behavior of the work-

loads in their nature, especially in the case of I/O disk intense applications. This is

necessary because, in general, the I/O-bound applications frequently presented a per-

formance bottleneck, especially in the case of virtualization, which is known to not

provide good performance portability over the native environment (HUBER; QUAST;

HAUCK; KOUNEV, 2011).

It is expected that time spent in disk write operations increases as a measure

that more threads are giving to the process. This is observed in all workloads and

occurs because writing operations are slower than read operations, so in this case,

179

 4000

 4050

 4100

 4150

 4200

 4250

 4300

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

BLACKSCHOLES

Number of Threads

Memory Usage (VmHWM)

(a)

 4020

 4050

 4080

 4110

 4140

 4170

 4200

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

BODYTRACK

Number of Threads

Memory Usage (VmHWM)

(b)

 4050

 4080

 4110

 4140

 4170

 4200

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

CANNEAL

Number of Threads

Memory Usage (VmHWM)

(c)

 4070

 4080

 4090

 4100

 4110

 4120

 4130

 4140

 0 20 40 60 80 100

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

DEDUP

Number of Threads

Memory Usage (VmHWM)

(d)

 4110

 4140

 4170

 4200

 4230

 4260

 4290

 0 20 40 60 80 100 120

 1 2 3 4 6 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

FACESIM

Number of Threads

Memory Usage (VmHWM)

(e)

 4020

 4050

 4080

 4110

 4140

 4170

 4200

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

FERRET

Number of Threads

Memory Usage (VmHWM)

(f)

 4020

 4050

 4080

 4110

 4140

 0 50 100 150 200

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

FREQMINE

Number of Threads

Memory Usage (VmHWM)

(g)

 4050

 4100

 4150

 4200

 4250

 4300

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

RAYTRACE

Number of Threads

Memory Usage (VmHWM)

(h)

 4000

 4050

 4100

 4150

 4200

 4250

 4300

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

STREAMCLUSTER

Number of Threads

Memory Usage (VmHWM)

(i)

 4050

 4100

 4150

 4200

 4250

 4300

 0 20 40 60 80 100 120 140 160 180 200 220

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

SWAPTIONS

Number of Threads

Memory Usage (VmHWM)

(j)

 4020

 4050

 4080

 4110

 4140

 4170

 4200

 0 50 100 150 200 250 300 350

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

VIPS

Number of Threads

Memory Usage (VmHWM)

(k)

 4050

 4080

 4110

 4140

 4170

 4200

 0 50 100 150 200 250 300 350

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

X264

Number of Threads

Memory Usage (VmHWM)

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.5: Performance Characterization of Enterprise Applications (Memory Usage).

when more worker threads are added, more concurrency occurs for write operations.

An interesting case occurs in Dedup (3.6(d)), which is a backup application that

180

use pipeline parallelism and is bounded by the output I/O stage (BIENIA, 2011). Figure

3.6(d) shows that it demonstrates different behavior compared to others workloads,

using high rates of disk writing. This essentially due to the algorithmic structure of

this application, which loads the data from the disk, applies algorithmic methods to

compress and mount the serial output stream that will be written back to the disk in the

final stage.

It is also important to note that in virtualized and the multi-tenancy environ-

ments, I/O disk operations are expected to present significant overhead. It can oc-

cur due to the sharing of underline resources, as presented by Ghoshal, Canon and

Ramakrishnan (2011b). This performance degradation, may also be significant for in-

stances that do not implement disk-buffering techniques and in applications that works

with small files, generating high latency and performance variation, leaving an uncon-

trolled competition for shared computing resources (BESERRA; ENDO; BARRETO,

2016), (SILVA; RYU; DA SILVA, 2012).

3.3.2.4 Cache Miss

The CPU cache-miss measured in the native environment (Figures 3.7(a),

3.7(b)), represents the number of data request not found in the cache memory of the

CPU. Thus, when a cache miss occurs, a CPU fetch request is required for another

cache level, such as L1, L2, L3, RAM or even the disk. As a consequence, the process

latency is increased as the number of misses increases. This is also a side effect of the

processor context-switch, caused by the thread scheduling (NIKOUNIA et al., 2015).

As we might expect applications that require an intense use of context-switching,

such as Streamcluster, Ferret, Facesim, Canneal, Vips and Streamcluster, have high

rates of cache miss, especially in the first threads, a similar result is presented by

Bienia (2011) and Jiang et al. (2012), which indicates that it happens because the

programs have a significantly larger working sets, so a small portion of it fits into the

181

 0.3

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

BLACKSCHOLES I/O

Number of Threads

MD0 Read/s MD0 Write/s

(a)

 0.3

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

BODYTRACK I/O

Number of Threads

MD0 Read/s MD0 Write/s

(b)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

CANNEAL I/O

Number of Threads

MD0 Read/s MD0 Write/s

(c)

 0.6

 0.75

 0.9

 1.05

 1.2

 0 20 40 60 80 100

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

DEDUP I/O

Number of Threads

MD0 Read/s MD0 Write/s

(d)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120

 1 2 3 4 6 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

FACESIM I/O

Number of Threads

MD0 Read/s MD0 Write/s

(e)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

FERRET I/O

Number of Threads

MD0 Read/s MD0 Write/s

(f)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 50 100 150 200

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

FREQMINE I/O

Number of Threads

MD0 Read/s MD0 Write/s

(g)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

RAYTRACE I/O

Number of Threads

MD0 Read/s MD0 Write/s

(h)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

STREAMCLUSTER I/O

Number of Threads

MD0 Read/s MD0 Write/s

(i)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 20 40 60 80 100 120 140 160 180 200 220

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

SWAPTIONS I/O

Number of Threads

MD0 Read/s MD0 Write/s

(j)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 50 100 150 200 250 300 350

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

VIPS I/O

Number of Threads

MD0 Read/s MD0 Write/s

(k)

 0.45

 0.6

 0.75

 0.9

 1.05

 0 50 100 150 200 250 300 350

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

x264 I/O

Number of Threads

MD0 Read/s MD0 Write/s

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.6: Performance Characterization of Enterprise Applications (I/O).

182

cache. However, we can note that the cache miss also increases in the last thread for

some applications, this possibly happens because as more working threads are added

the cache is replaced quickly by new instructions, so this competition for more cache

causes more misses.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

1 2 3 4 5 6 7 8

N
u
m

b
e
r

Number of Threads

Cache Miss

FREQMINE

RAYTRACE

STREAMCLUSTER

SWAPTIONS
VIPS

x264

(a)

 0

 20000

 40000

 60000

 80000

 100000

 120000

1 2 3 4 5 6 7 8

N
u
m

b
e
r

Number of Threads

Cache Miss

BLACKSCHOLES

BODYTRACK

CANNEAL

DEDUP

FACESIM

FERRET

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.7: Performance Characterization of Enterprise Applications (Cache Miss).

3.3.3 HPC Scenario

The HPC environment is responsible for characterizing and comparing the per-

formance of applications exposed in the native, KVM and LXC environments. The tests

were performed using full node capacity in each individual environment without con-

currency between the technologies. Therefore, the same service offer for hardware

resources was used, this guarantee the test efficiency.

The Figure 3.8 describes the methodology employed to perform the HPC ex-

periments. Thus, an instance was configured to scheduling from one to eight threads

the Parsec workloads in three individual environments with the same hardware con-

figuration. Hence, the average execution time is plotted on Figure 3.9. In addition, it

is also important to highlight that the main individual Parsec application characteristics

are described in Section 3.3.2.

183

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.8: Methodology followed in the evaluation of high performance scenario in
enterprise applications.

The Blackscholes application (Figure 3.9(a)) represents the domain of financial

analysis, being characterized to be data-parallel, coarse granulation, low sharing and

exchange data usage. Bienia (2011) suggests that Blackscholes has the lowest cache

miss rate of all Parsec programs with almost all of the shared data being accessed

by two threads. This can be seen on Core load (Figure 3.4(a)) and cache miss (Fig-

ure 3.7(b)), where Blackscholes have relatively low cache miss despite the fact that it

demonstrates being CPU intense (BHADAURIA; WEAVER; MCKEE, 2009). It possible

occurs because the workload is small enough so that memory bandwidth and cache

used in the experiments is not an issue. In addition, as mentioned by Chasapis et al.

(2016) Blackscholes is a relatively simple application that can achieve high degrees of

parallelism. Thus, virtualizations technologies demonstrate, in this type of implemen-

tation, to have little degradation effect in this application, revealing similar results on

three environments.

Bodytrack (Figure 3.9(b)) is a data-parallel application that simulates the com-

puter vision, which is responsible for tracking a human body with multiple cameras in

184

a sequence image. It is characterized to have medium working set and high sharing

data usage. Bodytrack also uses pipeline to perform I/O asynchronously, but Bienia

(2011) suggests to treat it as a data-parallel because it does not take advantage of

pipeline parallelism in the computationally intensive parts, which is responsible to com-

pute floating points too. Thus, the image is loaded using a persistent serial thread

pool, responsible for the intensive use of asynchronous disk I/O. Another characteris-

tic appointed by Bienia (2011) and Bhadauria, Weaver and McKee (2009) is that the

Bodytrack has working sets no larger than 16 MB and low L1 cache miss rates, this

can explain the good scalability in our three environments showed in the Figure 3.9(b).

However, as mentioned by the authors the serial parts of this programs will bottleneck

the performance if we add more cores.

The Canneal application (Figure 3.9(c)) represents the field of engineering. It

is characterized by having an unstructured model of parallelization with fine granularity,

in addition, there is a high sharing and data exchange. Bienia (2011) describes it as

having a very aggressive synchronization strategy based on data race and, in some

cases, the processor context-switching can reduce cache performance, which explains

the fact that it has the worst cache behavior of all Parsec benchmarks. It is also impor-

tant to notice that it has a large working sets, which means that a small portion of it can

fit on the processor cache, as a consequence, high levels of cache are used, increasing

the latency. However, as we can see in Figure 3.9(c), performance is getting better as

a measure of cores are added. Bienia (2011) argues that is caused by improved data

sharing between threads. It is also realized that from one to four threads, that the KVM

performance is worse than the container and native, this can be explained because

Canneal is sensitive to memory latency, and the elevated number of context switches

executed by the scheduler when migrated to vCPUs used in virtualization technology,

is not fully ported compared to the native environment, resulting in a high cache miss

rates, especially in first threads. A similar result is presented by Nikounia et al. (2015).

Dedup is an application (Figure 3.9(d)) that employs deduplication technique

185

to eliminate redundant data, it represents the enterprise storage, which is commonly

used in backup systems. It has pipeline parallelism composed of five stages, medium

granularity with unbounded working set, high data sharing and exchange. This work-

load has some similarity to vips, both have serial stages (first and last) responsible for

reading and writing the output format and also use small chunks to read and write to

disk I/O (NAVARRO; ASENJO; TABIK; CASCAVAL, 2009), (BIENIA, 2011).

Dedup is defined by Bienia (2011) as a complex workload, with many threads

executing different functions with different characteristics, in addition, it has a very large

working set, having some issues with cache memory and, as a consequence, demands

high levels of memory at disposal. In our tests represented in the Figure 3.9(d), dedup

shows an interesting behavior especially on the fifth thread, which has a peak value

compared to the others, this behavior is repeated in all three environments. This is

easily explained if we analyze the CPU load (Figure 3.4(d)), we can realize that the

serial part of the program causes the others threads to get stall while it writes the final

stages to the disk.

Running Dedup in KVM based-cloud has demonstrated some overhead, prob-

ably caused by the extensive need to reorder the cache memory and the synchroniza-

tions points characteristic of this workload. The performance gets worse at the eighth

thread, this happens because as we add more threads, the instructions that require the

integer processing units responsible for hashing, checksums and compression gets full,

and this queue of instructions causes the processor to stalled (NIKOUNIA; MOHAM-

MADI, 2015). In addition, some instructions can be forwarded from the third stage to

the last, thus inducing more concurrency to the serial I/O stage, thereby increasing the

bottleneck. It seems that KVM is not able to fully port the instructions presented in

native OS, also in this case, because it uses QCOW2 disk images, which is known to

have some limitations (REGOLA; DUCOM, 2010). However, what brings us surprise

was the poor performance of the LXC based-cloud, the expected result would be some

resemblance to the native environment, but actually we have a completely different

186

one, being much worse than KVM. This result led us to re-run this test, with different

deployment to investigate this issue, this is best described at the end of this subsection.

Facesim (Figure 3.9(e)) represents the field of realistic animation applying

physical effects to simulating a muscular activation of a human face. It uses a data-

parallel application with coarse granularity, large working set with low sharing and

medium data exchange. Facesim is an intensive task parallel application with stream-

ing behavior, and it is among applications with high rates of cache miss (BIENIA, 2011).

This factor is also explained by the large working set used by the application, and it

spends most of the time updating the human face. In addition, Facesim is knows for

poor scheduling with more threads, this explanation is given by the fact that the main

function of the program expects read requests from other threads. In our tests (Figure

3.9(e)), some overhead is noticed when KVM is used, a similar result is presented by

the authors Nikounia and Mohammadi (2015). This is expected since the virtualiza-

tion layer affects this type of application, which requires significant memory operations

(BHADAURIA; WEAVER; MCKEE, 2009).

Ferret is a streaming application (Figure 3.9(f)) that uses pipeline parallelism

to employ a similarity search. Basically the program segments an image and searches

a database and sorts it in order of similarity. The process involves six stages, so

the first (input) and the last stage (output) are serials, which is typical in this type of

parallelism, and the four intermediate stages are responsible for query image seg-

mentation (NAVARRO; ASENJO; TABIK; CASCAVAL, 2009), (BIENIA, 2011). Another

characteristic of this application, is that the cache is intensively used for inter-thread

communication, so that its capacity and latency is a fundamental property and could

affect the behavior. In our experiments, we can perceive at the Figure 3.9(f) that the

KVM suffers a little overhead on three and four threads. Probably the complexity of

this application coupled with the queue buffers and high cache miss ratio causes some

threads to stall, waiting the I/O serial stages in the pipeline. Thus, virtualization is inca-

pable to efficiently coordinate the virtual processor (NIKOUNIA; MOHAMMADI, 2015),

187

(BARROW-WILLIAMS; NICK; FENSCH; CHRISTIAN; MOORE, 2009), (NAVARRO;

ASENJO; TABIK; CASCAVAL, 2009).

Freqmine behavior is represented in Figure 3.9(g) and is a data mining applica-

tion parallelized with OpenMP. It applies a data-parallel model with medium granularity

and also has high data sharing with medium exchange. It has a large working set,

which easily exceed the amount of hundreds of megabytes (BIENIA, 2011). However,

this application actively uses inter-thread communications and it is known to scale well

across different CPU platforms, but for this, they must have a high FSB rates for com-

munication among cores (BHADAURIA; WEAVER; MCKEE, 2009). In the performed

experiments represented by the Figure 3.9(g), little impact due to virtualization can

be seen on this application, therefore, this scenario without competition among users,

represents an environment conducive to this type of application.

Raytrace performance is plotted in Figure 3.9(h). It is a rendering domain ap-

plication, which uses a ray technique to create realistic images by applying lights and

shadows effects. It has a data-parallel model with medium granularity, it shares high

amounts of data with low exchange. Raytrace simulates the use of a camera by moving

an object in front of it, and this view is shown on the screen. Bienia (2011) argues that

this representation forms a large working set and also creates a significant reuse of it.

This probably explains the relatively low cache miss rate (Figure 3.7(a)) in our exper-

iments and also the high L1 cache requests presented by Nikounia and Mohammadi

(2015). However, in the figure 3.9(h) we can see in our KVM-based cloud, Raytrace

performance differently when compared to native and LXC. The overhead experienced

may be due to the fact that Raytrace has some significant points of threads synchro-

nization, so in this case the hypervisor adds more cycles to this task. A similar result

is described by Nikounia and Mohammadi (2015), which also correlate this behavior

by comparing perceived in Ferret, Facesim and Bodytrack, which also has a similar

structure model.

188

Streamcluster is characterized in the Figure 3.9(i). It is a data-parallel min-

ing application with medium granularity. It also has a medium working set with low

data sharing and medium exchange. Bienia (2011) characterizes it as being similar

to Blackscholes because they both make intense use of floating-point operations, and

also with canneal, facesim and ferret, having high levels of cache miss rates. This can

also be observated in the cache-miss Figure 3.7(a). However, Bhadauria, Weaver and

McKee (2009) increases L2 cache sizes and finds a minimal reduction in miss rates,

this is due to the fact that a larger working set does not fit into the cache area, in

addition, it cannot take advantage of a larger L3 cache either, because some instruc-

tions do not extend to L3, bypassing it to the main memory (BIENIA; KUMAR; SINGH;

LI, 2008). Thus, the authors Bhadauria, Weaver and McKee (2009) have identified

that by increasing the FSB and giving the memory more channels, the performance

of Streamcluster is improved. Another important fact is demonstrated by Nikounia and

Mohammadi (2015), is that Streamcluster has some cache contentions and its many

synchronization points can reduce the performance. It is noticed in our tests that in

the first thread KVM has a worse performance initially, this can be explained by the

high context-switching presented in the first thread used and the extended number of

thread synchronization, thus spending more cycles. Moreover, KVM improves perfor-

mance with more threads, being similar to that experienced by native and LXC. Possibly

because adding more threads makes better memory usage and parallelization level is

increased.

Swaptions is represented in Figure 3.9(j). It is an application of financial anal-

ysis, which is data-parallel with coarse granularity. It also has medium working set,

both low sharing and data exchange. Swaptions basically breaks the input into small

chunks and stores it in the portfolios array, so portions of the array are equally dis-

tributed among the working threads. It has a small working set that almost entirely fits

into processor cache structure, which explain the best cache-miss rate of the Parsec

applications (Figure 3.7(a)). In addition, the authors Bhadauria, Weaver and McKee

(2009) and Chasapis et al. (2016) described that Swaptions and Blackcholes are rel-

189

atively simple applications that scale well, moreover, they mentioned that benchmarks

Blackscholes, Bodytrack, Fluidanimate, Freqmine, x264 and Swaptions achieves some

performance gains using virtual cores, indicating that this can happen by the utilization

of simultaneous multi-treading, which is capable to efficiently coordinate the threads

and increase the level of parallelization. Thus, it is almost impossible to see the differ-

ence in three environments presented for such application.

Vips performance can be analyzed in Figure 3.9(k). It is a media processing

application that applies a technique to perform an image transformation. It uses data-

parallel model with coarse granularity and also has a medium working set with low

data sharing and medium data exchange. Vips is composed by 18 pipeline stages

and initially it loads parts of an input image on demand and uses memory-mapped

I/O to perform the operations and re-write to disk (BIENIA, 2011). The application is

described by Bhadauria, Weaver and McKee (2009) as having good scalability and

also because it is sensitive to the number of memory channels. In our experiments,

KVM performance was expected due to the fact that the virtualization layer causes

some significant overhead especially in the case of applications that demands disk I/O

operations and synchronization points, is a similar result presented in the experiments

of Nikounia and Mohammadi (2015). However, what was not expected was the poor

performance of LXC containers, which was worse than KVM in almost all threads. This

results requires further investigation because it is known that LXC performs near-native

and the virtualization layer does not interfere as it does in KVM.

X264 is a media processor based on H.264 video encoder standard that uses

a short scene from an uncompressed movie to encode. This workload (Figure 3.9(l))

uses pipeline parallelism with coarse granularity and has a medium working set us-

ing high amounts for sharing and exchange data. In native input, scenes from an

uncompressed movie in HDTV resolution are encoded. Initially x264 build a complex

pipeline model to compute the dependency between the frames, where each frame

corresponds to a pipeline stage, then the frames are divided across thread using fluc-

190

tuating points units (BIENIA, 2011), (BHADAURIA; WEAVER; MCKEE, 2009). In our

tests, x264 demonstrates good scalability up to eight threads, presenting a similar re-

sult in three environments, revealing that the communication patterns employed by this

type of parallelization method coupled with the intense use of floating point units is not

considerably affected by virtualization.

The LXC containers are well known to be a light-weight virtualization with little

virtualization overhead because they share the same kernel that the OS, employing

cgroups and namespace for hardware and software isolation. Its features are well doc-

umented and several papers describes that it performs better than full virtualization,

but at the cost of less resources isolation. However, two specific applications demon-

strated some unpredictable results using Linux Containers, they are, Dedup and Vips.

The performance of such applications was dramatically lower than KVM, so the results

made us suspect that something interfered in the experiments, so we ran it again and

the same results were experienced.

A deeper investigation was conducted to answer the unsolved question and we

discovered that two things are influencing our results. The first is about the workloads

characteristics. Two applications use pipeline parallelism, so it is typical to find in this

model a large number of threads bounded to serial I/O stage, which is responsible

for reading and writing data to disk. Therefore, both applications compute their data

in the intermediate stages and require to write the final data on the disk, followed by

a reordering of the stages. This causes a well-known overhead in the KVM, some

papers estimate to be about 6 to 10%. But in the case of LXC, the explanation goes

further and relies on the way that cloud manages the containers. Cloudstack uses

a primary storage for running VMs and attached disks, and a secondary storage for

system images, ISOs, and snapshots, both storages are mounted on the front-end

node and use the NFS protocol. The front-end node was not used by the experiments

because it was responsible for managing the cloud infrastructure and its utilization

could distort the results. Therefore, we essentially used the compute node two and

191

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

blackscholes (real)

native LXC KVM

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

bodytrack (real)

native LXC KVM

(b)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

canneal (real)

native LXC KVM

(c)

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

dedup (real)

native LXC KVM

(d)

−100

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

facesim (real)

native LXC KVM

(e)

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

ferret (real)

native LXC KVM

(f)

 0

 100

 200

 300

 400

 500

 600

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

freqmine (real)

native LXC KVM

(g)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

raytrace (real)

native LXC KVM

(h)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

streamcluster (real)

native LXC KVM

(i)

 0

 50

 100

 150

 200

 250

 300

 350

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

swaptions (real)

native LXC KVM

(j)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

vips (real)

native LXC KVM

(k)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

x264 (real)

native LXC KVM

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.9: High Performance Scenario.

four (node three was deactivated) to performs the experiments. However, we suspect

that this could might contain the response and we decided to perform the same test by

running the instance on the front-end node where the mounted NFS storage is located.

192

Thus, Figures 3.10(a) and 3.10(b) contains the results of the tests performed on the

front-end node and compute node 2.

Therefore, the second thing that we discover is, that the workloads performed

differently in LXC executed in front-end in comparison to LXC executed in compute

node 2. The reason for the poor performance presented by the compute node (Figure

3.10(a), 3.10(b)) is because Cloudstack accesses shared disk of primary storage over

the network via NFS, so when the underlying storage uses NFS for disk I/O operations,

the data is broken into smaller, costly and unstable NFS I/O operations that require win-

dows sizes that are not sufficiently large, increasing latency. So, this intensely repeated

behavior by applications that demand high disk usage has its performance massively

degraded (AL-MUKHTAR; MARDAN, 2014), (FELTER; FERREIRA; RAJAMONY; RU-

BIO, 2015). In the case of front-end, the disk is accessed locally, without relying NFS,

this explains the good performance.

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Number of Threads

dedup (real)

LXC−Node 2
LXC−Front End

Native−Node 2

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4 5 6 7 8

S
e
c
o
n
d
s

Number of Threads

vips (real)

LXC−Node 2
LXC−Front End

Native−Node 2

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.10: Deeper investigation (Dedup and Vips).

So even if we setting in the Cloudstack dashboard to instantiate the VM on

compute node 2, the container uses its hardware (memory and processor) resources,

but manipulates the I/O data that is mounted on the front-end node using NFS, caus-

ing the bottleneck (UEDA; NAKATANI, 2010). This is more expressive in these two

workloads, because according to Bienia (2011), both use I/O to load parts of an input

193

image and then re-write to the disk, and this operation using the network increases the

latency. Therefore, the LXC based-cloud using this deployment is not favorable to this

type of workload. However, a further investigation is necessary to predict whether a

Cloudstack issue or a cloud deployment configuration.

3.3.4 Multi-tenancy Scenario

The multi-tenancy environment represents concurrency among users who use

the same service offering. This is the closest scenario to represent a IaaS cloud pro-

duction environment. Because it adds more users, it is instigated to compete for hard-

ware resources and different results between virtualization technologies are expected

as more users are added.

Figure 3.11 represents the methodology used to perform the experiments.

Thus, two instantiated users share the same computing node with split hardware re-

sources, running Parsec workloads in three different environments.

3.3.4.1 Configuration 1

The first configuration made, used all the parsec applications in two concurrent

instances (Figure 3.12). With this test we expect to find if there is statistically difference

between the environments in deployed scenario.

3.3.4.1.1 Same Applications

Some applications show insignificant variation using two users when com-

pared to the native environment, are blackscholes (Figures 3.13(a), 3.14(a), bodytrack

(Figures 3.13(b), 3.14(b)), facesim (Figures 3.13(f), 3.14(e)), ferret (Figures 3.13(e),

3.14(f)), raytrace (Figures 3.13(h), 3.14(h)) and swaptions (Figures 3.13(j), 3.14(j)).

Canneal (Figures 3.13(c), 3.14(c)) is an interesting case despite the fact that it has a

194

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.11: Conf1: Methodology followed in the evaluation of enterprise applications
in multi-tenancy scenario.

high cache miss ratio, both KVM users has performed significantly better than KVM

HPC in all threads, while the native and LXC outperforms the HPC from the second

thread. This can be explained by the nature of this application, which shares large

amounts of cache for read-only data and it is unbounded, that is, it does not have

limited memory usage. (BIENIA, 2011), (NIKOUNIA; MOHAMMADI, 2015).

Dedup (Figures 3.13(d), 3.14(d)) and Vips (Figures 3.13(k), 3.14(k)) instead,

demonstrated a proportional performance in all users and environments, with LXC-

users being even worse than HPC, caused by manipulation of container on another

host. Freqmine demonstrated in LXC and native has performed poorly in the first

thread, demonstrating that this unbounded workload gets better as it is scalonated

and present negligible overhead in the next threads due to the high degrees of data

cache sharing. Streamcluster is a stream data mining application, sensitive to memory

latency. Tests have shown that KVM, LXC, and native users outperform the HPC envi-

ronment in all environments, despite the fact that computing resources have been split.

This is possible explained to be because Streamcluster can achieve high degrees of

195

parallelism, and in the Pthreads version spends up to 90% of total execution time in

the same function, as a consequence running the same applications in the neighbor

makes it favorable to cached data sharing. The last of the thirteen applications is x264,

the native user2 is initially better than the others, but stabilizes after that, a possible

reason is that it could benefit from the data shared by the user1, which started the

workload first.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.12: Description of the Parsec multi-tenancy scenario with same applications
on 2 concurrent users.

3.3.4.1.2 Different Applications

To perform this deployment, the Parsec applications was splited in two in-

stances, that is, each instance with six different applications (Figure 3.15). A care

was taken to avoid similar domain applications (e.g. data mining with data mining) to

be executed one after another in the same instance, this to simulate a differentiated

environment and avoid the cache sharing.

Blackscholes (Figure 3.16(a)), Facesim (Figure 3.17(c)), Freqmine (Figure 3.16(d)),

Raytrace (Figure 3.16(e)), Swaptions (Figure 3.17(e)), x264 (Figure 3.16(f)), had negli-

196

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Canneal−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Dedup−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Facesim−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Ferret−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Freqmine−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Raytrace−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

 50

 100

 150

 200

 250

 300

 350

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Swaptions−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(j)

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Vips−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(k)

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

x264−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.13: MultiTenancy-User1 Scenario (Same Applications with 2 concurrent
users).

gible difference among users, with little overhead due to virtualization. Bodytrack (Fig-

ure 3.16(b)), shows little difference in the first thread with LXC, indicating some inter-

ference from the neighbor user2. Canneal (Figure 3.17(a)) and Streamcluster (Figure

197

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Canneal−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 5

 10

 15

 20

 25

 30

 35

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Dedup−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Ferret−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Freqmine−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Raytrace−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

 50

 100

 150

 200

 250

 300

 350

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Swaptions−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(j)

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Vips−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(k)

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

x264−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.14: MultiTenancy-User2 Scenario (Same Applications with 2 concurrent
users).

3.17(d)) that are similar in sensitive to main memory latency (BHADAURIA; WEAVER;

MCKEE, 2009), (NIKOUNIA; MOHAMMADI, 2015), have some performance boost

from the second thread on all users. Two possible factors explain this behavior, mainly

198

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.15: Description of the Parsec multi-tenancy scenario with different applica-
tions on 2 concurrent users.

because the working set is larger and requires more access to main memory, so in

this case, the transactional lookaside buffer (TLB) that is responsible for mapping reg-

ular memory access works very well reducing memory misses, (FOUNDATION, 2016),

(FELTER; FERREIRA; RAJAMONY; RUBIO, 2015) and also the data prefetch, which

loads the data or instructions from the main memory to a lower-level cache that is

faster before they are needed, predicting the block addresses that will be referenced

(CHEVERESAN; RAMSAY; FEUCHT; SHARAPOV, 2007), (FERDMAN; ADILEH; KOCBER-

BER; VOLOS; ALISAFAEE; JEVDJIC; KAYNAK; POPESCU; AILAMAKI; FALSAFI,

2012). Dedup (Figure 3.17(b)) and Vips (Figure 3.17(f)), has an expected performance

degradation with LXC-user2, due to the manipulation of the container on another host,

and the similar performance in KVM and native has been realized. Ferret (Figure

3.16(c)), demonstrates a growing virtualization overhead in the fourth thread, which is

expected due to the serialized stages, especially the I/O input presented in this work-

load.

3.3.4.2 Configuration 2

To perform this configuration, three instances were used to simulate the multi-

tenancy environment (Figure 3.18). Furthermore, to have a total distribution from the

eight threads from the processors the service offer was configured for the first and

199

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 50

 100

 150

 200

 250

 300

 350

 400

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Ferret−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Freqmine−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Raytrace−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

x264−user1 (Different Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.16: Multi-tenancy-User1 Scenario (Different Applications with 2 concurrent
users).

second users to use three threads and the third uses two threads.

3.3.4.2.1 Same Applications

The same applications equally distribute all the workloads on the instances, as

is shown in the Figure 3.19.

In the case of Blackscholes (Figures 3.20(a), 3.21(a), 3.22(a)), Facesim (Fig-

ures 3.20(e), 3.21(e), 3.22(e)), Raytrace (Figures 3.20(h), 3.21(h), 3.22(h)) and Swap-

tions (Figures 3.20(j), 3.21(j), 3.22(j)) workloads, all users showed little difference be-

tween virtualization technologies, with similar variations that occurred in the past test.

The Bodytrack LXC workload on user 1 (Figure 3.20(b)) and 2 (Figure 3.21(b))starts to

behave worse than KVM and user 3 (Figure 3.22(b)) overcomes KVM on the second

thread, we suspect that simultaneity in I/O competition induces these results. Canneal

(Figures 3.20(c), 3.21(c), 3.22(c)) and Streamcluster (Figures 3.20(i), 3.21(i), 3.22(i))

200

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Canneal−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Dedup−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 50

 100

 150

 200

 250

 300

 350

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Swaptions−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 20

 40

 60

 80

 100

 120

 140

 160

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

Vips−user2 (Different Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.17: Multi-tenancy-User2 Scenario (Different Applications with 2 concurrent
users).

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.18: Conf2: Methodology followed in the evaluation of enterprise applications
in multi-tenancy scenario.

201

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.19: Description of the Parsec multi-tenancy scenario with same applications
on 3 concurrent users.

202

have demonstrated some erratic behavior in all LXC users, performing initially better

than native, this is expected, as these workloads were described by Nikounia and Mo-

hammadi (2015) by suffering more cache contention, in addition, container resource

coordination proves to be more efficient than native users who were competing for

resources aggressively, which elevates the cache miss rate.

Dedup (Figures 3.20(d), 3.21(d), 3.22(d)) and Vips (Figures 3.20(k), 3.21(k),

3.22(k)) as expected, had poor LXC performance, with KVM being similar to native in all

users. Ferret and x264 in third user with KVM presented high levels of overhead in the

second thread, it could have been caused by the fact that the instance was mounted

with different thread configuration. Freqmine (Figures 3.20(g), 3.21(g), 3.22(g))is inter-

esting because KVM gain some boost in the first thread and LXC performs better than

native in user 2 and 3. In fact, in this case an opposite result was expected but a closer

analyze indicates that using native and LXC the OS apparently does not coordinate ef-

ficiently the resource isolation between users, inducing high rates of context switching

and cache miss.

3.3.4.2.2 Different Applications

The proposed environment divides the applications in three users, as shown

in Figure 3.23.

Blackcholes (Figure 3.24(a)) demonstrates little difference between virtualiza-

tion technologies in this environment as well, which proves to be favorable to this appli-

cation especially due to the fact that almost all shared data is accessed by two threads,

where the main thread is not communication-bound in relation to the worker’s threads

(BIENIA, 2011). And similarly occur in Facesim (Figure 3.25(a)), Freqmine (Figure

3.25(b)), Swaptions (Figure 3.26(d)) workloads, where different levels of parallelization

can be achieved, but using two threads the result is negligible difference among vir-

tualizations. Bodytrack (Figure 3.24(b)), LXC repeats behavior presented in the same

203

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

 45

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(j)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.20: Multi-tenancy-User1 Scenario (Same Applications with 3 concurrent
users).

application environment, where performance is below than expected, this is a result of

the use of asynchronous disk I/O where a pool of threads loads the input images to be

computed using floating point operations (BIENIA, 2011).

204

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(j)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.21: Multi-tenancy-User2 Scenario (Same Applications with 3 concurrent
users).

Canneal (Figure 3.24(c)) now exhibits similar performance between native and

KVM, and LXC has a worse performance, indicating that the race for more resources in

the multi-tenancy induces this result, a similar behavior is presented by Nikounia and

205

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(e)

 150

 200

 250

 300

 350

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

 600

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(j)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.22: Multi-tenancy-User3 Scenario (Same Applications with 3 concurrent
users).

Mohammadi (2015) and Bhadauria, Weaver and McKee (2009) where this workload

exhibits high rates of context switching and is also sensitive to memory latency. In

the case of Dedup (Figure 3.24(d)) and Vips (Figures 3.26(e), LXC again proves to be

206

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.23: Description of the Parsec multi-tenancy scenario with different applica-
tions on 3 concurrent users.

inefficient for this deployment. KVM is better than native, which is not surprising due the

fact that the race for resources in the native environment between users can increase

the cache miss, especially in this case, and this workload is described by Bienia (2011)

for being dependent on effectiveness of cache management. Ferret (Figure 3.26(a)),

reveals increasingly KVM overhead in the second thread, a similar result is presented

by Nikounia and Mohammadi (2015), possibly caused due to the restriction of threads

used by the virtualized processor, negatively affecting the resources required to satisfy

the strong communication required in this workload.

The workload Raytrace (Figure 3.26(b)) renders an image and according to

Nikounia and Mohammadi (2015), although the working set is large, many parts of its

computation can be reused achieving less L1 cache misses, which leads to LXC per-

forms a slightly better than KVM in our experiments. Streamcluster (Figure 3.26(c)) it

is mentioned by Nikounia and Mohammadi (2015) and Bhadauria, Weaver and McKee

(2009) by having largest memory demands and also has many synchronization points,

inducing more instructions to the schedulers presented in the VMs, consequently KVM

and LXC have similar overhead in comparison to native, especially in this case, where

207

only two threads were giving to the processor. In the case of X264 (Figure 3.25(c)),

apparently the serial sections of the code and also the context switching between the

initial thread adds some overhead initially to the KVM, where it starts slower but in the

second thread the result is similar to LXC.

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Different Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user1 (Different Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user1 (Different Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user1 (Different Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.24: Multi-tenancy-User1 Scenario (Different Applications with 3 concurrent
users).

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Different Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 250

 300

 350

 400

 450

 500

 550

 600

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user2 (Different Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user2 (Different Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.25: Multi-tenancy-User2 Scenario (Different Applications with 3 concurrent
users).

208

 150

 200

 250

 300

 350

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user3 (Different Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user3 (Different Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user3 (Different Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(c)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user3 (Different Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(d)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user3 (Different Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(e)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.26: Multi-tenancy-User3 Scenario (Different Applications with 3 concurrent
users).

3.3.4.3 Configuration 3

The last configuration made, simulates the multi-tenancy environment using

four users (Figure 3.27). In the case of cloud users, service offerings have been con-

figured to split computing resources according to the available processor threads and

main memory.

3.3.4.3.1 Same Applications

This methodology focuses on running all applications on the four users simul-

taneously (Figure 3.28) to investigate the performance of parsec workloads. Therefore,

four instances were deployed in the case of cloud, and four root users were created in

the case of native environment.

The Blackscholes (Figures 3.29(a), 3.30(a), 3.31(a), 3.32(a)) and Swaptions

209

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.27: Conf3: Methodology followed in the evaluation of enterprise applications
in multi-tenancy scenario.

(Figures 3.29(j), 3.30(j), 3.31(j), 3.32(j)) workloads are mentioned by Chasapis et al.

(2016) as simple applications that contain a single parallel loop, so running in all users,

showed little difference between the virtualization even in the multi-tenancy. Facesim

(Figures 3.29(e), 3.30(e), 3.31(e), 3.32(e)) also has a little variation, especially in this

scenario where the bus contention does not impact at low treads count (BHADAU-

RIA; WEAVER; MCKEE, 2009). Bodytrack (Figures 3.29(b), 3.30(b), 3.31(b), 3.32(b)),

Dedup (Figures 3.29(d), 3.30(d), 3.31(d), 3.32(d))and Vips (Figures 3.29(k), 3.30(k),

3.31(k), 3.32(k)) executing with containers exhibits notorious poor performance com-

pared to native and KVM, caused by the container manipulation on another host, it

is also interesting to note that in Vips (Figures 3.29(k), 3.30(k), 3.31(k), 3.32(k)), the

first LXC user apparently gains some form of preference having a better performance

in relation to other tenants. Canneal (Figures 3.29(c), 3.30(c), 3.31(c), 3.32(c)) and

Freqmine (Figures 3.29(g), 3.30(g), 3.31(g), 3.32(g)) in this environment have demon-

strated overhead on KVM virtualization for all users and few variations between native

and LXC users, which is expected due the fact that these workloads are CPU inten-

sive and show aggressively data race. This could produce different results with native

210

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.28: Description of Parsec multi-tenancy scenario with same applications on 4
concurrent users.

211

users and with LXC virtualization, especially with the level of isolation offered by it,

which seems to be conducive to the same application in the tenant environment.

Freqmine also demonstrates a performance boost using KVM virtualization

in all users, a similar result is shown by the authors Bhadauria, Weaver and McKee

(2009), which explains that this can happen since the threads can be swapped into the

core when one thread is stalled waiting data. Although Ferret (Figures 3.29(f), 3.30(f),

3.31(f), 3.32(f)) uses a pipeline parallelism similar to use in dedup, with serial portions

in the input and output stages, it demonstrated a different result with increasing KVM

overhead. Essentially this is because Ferret keeps the database of images loaded in

memory, not the disk like Dedup (BIENIA, 2011).

Raytrace (Figures 3.29(h), 3.30(h), 3.31(h), 3.32(h)) and x264 (Figures 3.29(l),

3.30(l), 3.31(l), 3.32(l)) representing the rendering and media processing application

domains, and demonstrate some KVM overhead resulting from the necessity for these

workloads to have many data computing, using synchronizations points and context

switching, a well-known weakness of the KVM (MUKHEDKAR; VETTATHU; CHIRAM-

MAL, 2016). In according with Bhadauria, Weaver and McKee (2009) Streamcluster

(Figures 3.29(i), 3.30(i), 3.31(i), 3.32(i)) uses 52% of all its operation to compute data

using floating point operations, this is similar to Blackscholes, so the tests in this envi-

ronment show to be a case with low distinction between the virtualizations.

3.3.4.3.2 Different Applications

In this test, the workloads presented in the Parsec suite are distributed among

the four users to represent another form of multi-tenancy environment, where applica-

tions are different (Figure 3.33). Thus, different results are expected due to the variety

of this environment and, as a consequence, a performance characterization can be

achieved.

212

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(j)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.29: Multi-tenancy-User1 Scenario (Same Applications with 4 concurrent
users).

The Blackscholes (Figure 3.34(a)), Facesim (Figure 3.35(b)) and x264 (Figure

3.37(c)), showed an insignificant difference in the presented multi-tenancy environ-

ment, proving that in this case, these applications suffer little interference and can be

213

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 80

 100

 120

 140

 160

 180

 200

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 150

 200

 250

 300

 350

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(j)

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.30: Multi-tenancy-User2 Scenario (Same Applications with 4 concurrent
users).

effectively used. The Bodytrack (Figure 3.35(a)), Dedup (Figure 3.34(c)) and Vips (Fig-

ure 3.36(b)) applications in KVM virtualization perform similarly to the native environ-

ment, and LXC containers are significantly different, especially in the case of Dedup,

214

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 80

 100

 120

 140

 160

 180

 200

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

 45

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(e)

 150

 200

 250

 300

 350

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(j)

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.31: Multi-tenancy-User3 Scenario (Same Applications with 4 concurrent
users).

where the deployed cloud is not favorable to such workload.

In the case of the Canneal (Figure 3.34(b)) and Freqmine (Figure 3.35(c)) ap-

215

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(a)

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(c)

 10

 15

 20

 25

 30

 35

 40

 45

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(d)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(e)

 180

 200

 220

 240

 260

 280

 300

 320

 340

 360

 380

 400

1 2

S
e

c
o

n
d

s

Number of Threads

Ferret−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(f)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(g)

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(h)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(i)

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

1 2

S
e

c
o

n
d

s

Number of Threads

Swaptions−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(j)

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

Vips−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(k)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(l)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.32: Multi-tenancy-User4 Scenario (Same Applications with 4 concurrent
users).

plications running on KVM-based cloud performs quite better than the others, it is very

interesting performance in these workloads, mainly because LXC and native are not

as different as shown in the another environment, which reveals that in the same ap-

216

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.33: Description of Parsec multi-tenancy scenario with different applications
on 4 concurrent users.

plications, four workloads compete aggressively for machine resources, deteriorating

performance and runtime for all users. Thus, in this environment with different tenants

this has not occurred, especially in the KVM virtualization, which has a better resource

isolation.

Ferret (Figure 3.36(a)) demonstrated a crescent overhead using KVM, where

the two threads induce significant overhead due to the previously discussed charac-

teristics of this workload. The KVM-based cloud executing the workloads Raytrace

(Figure 3.37(a)) and Streamcluster (Figure 3.37(b)) has demonstrated that it does not

be able to port all the necessary processors resources and memory management for

these workloads, so the applications do not perform as well as LXC.

3.4 SCIENTIFIC APPLICATIONS

The scientific field was represented by the NAS Parallel Benchmark suite,

which contains a small set of applications. These applications are described in the

217

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 210

 220

1 2

S
e

c
o

n
d

s

Number of Threads

Blackscholes−user1 (Different Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Canneal−user1 (Different Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 10

 15

 20

 25

 30

 35

 40

1 2

S
e

c
o

n
d

s

Number of Threads

Dedup−user1 (Different Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.34: Multi-tenancy-User1 Scenario (Different Applications with 4 concurrent
users).

 80

 100

 120

 140

 160

 180

 200

1 2

S
e

c
o

n
d

s

Number of Threads

Bodytrack−user2 (Different Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Facesim−user2 (Different Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 250

 300

 350

 400

 450

 500

 550

 600

1 2

S
e

c
o

n
d

s

Number of Threads

Freqmine−user2 (Different Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.35: Multi-tenancy-User2 Scenario (Different Applications with 4 concurrent
users).

 150

 200

 250

 300

 350

 400

1 2

S
e
c
o
n
d
s

Number of Threads

Ferret−user3 (Different Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

1 2

S
e
c
o
n
d
s

Number of Threads

Vips−user3 (Different Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.36: Multi-tenancy-User3 Scenario (Different Applications with 4 concurrent
users).

218

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

Raytrace−user4 (Different Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(a)

 200

 250

 300

 350

 400

 450

 500

 550

1 2

S
e

c
o

n
d

s

Number of Threads

Streamcluster−user4 (Different Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(b)

 40

 60

 80

 100

 120

 140

 160

 180

1 2

S
e

c
o

n
d

s

Number of Threads

x264−user4 (Different Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.37: Multi-tenancy-User4 Scenario (Different Applications with 4 concurrent
users).

Section 2.3.2. In these test scenario, OMP programming model was used for the NPB

benchmarks BT, CG, EP, FT, IS, LU, MG, SP and UA. In addition, it was employed

the class B, which represent the intensity of the workloads. A better description of the

functionalities of these applications can be seen in 2.3.2.

3.4.1 Performance Characterization

To discover and characterize how applications react to increasing threads, all

9 applications were monitored in the native environment, creating a baseline. The

collected data refers to memory usage, core load, cache miss, and I/O operations.

They are described in the following subsections.

3.4.1.1 Core Load

The core load utilization of the workloads confirms an important description of

the NPB suite addressed in the literature. The NPB suite is high performance com-

puting oriented and explore its workloads parallelism. As we can see in Figure 3.38,

all applications have increased core utilization when more threads are scheduled. In

addition, when we look at the eighth thread of all applications, the maximum utilization

of the processor is noticeable and, due to this, a reduction in execution time. Another

219

relevant aspect is that when we have an increase of threads, the use of the core has

a quickly reduction and soon thereafter a quickly increase in its use. This suggests

that when the threads are scheduling, a small loss of performance occurs, almost im-

perceptibly, and soon after, when the other thread replaces, there is an increase in

performance. One of the main contributions is that all applications behave differently.

The IS application is an important case. It differs from other applications be-

cause of its faster execution time, represented in some threads in milliseconds. Be-

cause of this, to create it graph, a small data collection could be made, and we can

note in Figure 3.38(e) that, as the number of threads increases, the use of the core

load also increases, a reaction already expected. However, here it is clear that when

threads are scheduling, there is a minimal loss of performance, even in milliseconds,

which is known as context switching.

3.4.1.2 Memory Usage

The workloads memory usage of the NPB suite (Figure 3.39) had a specific

variance in each application. It is important to point out that the memory scale rep-

resented in each application is in Kilobytes, to evidence the increase or decrease of

memory usage even in small amounts. The BT (Figure 3.39(a)) is an application that

focus in the floating point performance, which uses less than 200 Megabytes during its

execution along 8 threads. We note that in the second thread there is a large increase

in memory usage, but in fact this is not representative because the scale in this appli-

cation is sized in 50 to 50 kilobytes, that is, 0.1 Megabytes. In addition, it is noticed that

there is a small increase in memory usage which shows that it follows the increase of

performance presented by the application in the next threads.

The CG (Figure 3.39(b)) is an intensive memory application, which uses a

linear amount of memory in any of the 8 threads. The average memory usage in this

application is about 350 Megabytes. In addition, we can note that when threads are

220

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

BT

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 30 60 90 120 150 180 210 240 270

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

CG

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(b)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

EP

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200 220

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

FT

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(d)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25

 1 2 3 4 5 6 7 8
C

o
re

 L
o

a
d

 (
%

)

Timestamps

IS

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(e)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180 200

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

LU

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(f)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

MG

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(g)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

SP

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(h)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

C
o

re
 L

o
a

d
 (

%
)

Timestamps

UA

Number of Threads

CPU0
CPU1

CPU2
CPU3

CPU4
CPU5

CPU6
CPU7

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.38: Performance Characterization of Scientific Applications (Core Load).

scheduling, there is low memory usage, probably resulting in performance loss. Also,

when the next thread replaces, memory usage returns to the linear quantity.

The EP (Figure 3.39(c)) is a non-intensive memory application, which exhibits

a variation in memory usage taking into account the scale in Kilobytes. It uses about

100 megabytes. It is noticeable that memory usage increases while the number of

threads increases, resulting in shorter execution time and performance gain.

The FT (Figure 3.39(d)), is characterized as a intensive memory application,

221

which uses a linear amount of memory along the 8 threads. The average memory

usage is about 13 Gigabytes, the highest usage among all NPB suite applications.

Also, when threads are scheduling a small decrease in usage is noticeable, but returns

quickly to their linear consumption of memory.

The IS (Figure 3.39(e)) is an intensive memory workload with focus in integer

performance, that has significant variation in memory usage and precisely a reduction

in memory usage while the threads were scheduling. The average memory usage

is approximately 250 Megabytes. Due to its fast execution time, IS suffers more in-

tensely when threads are scheduling because it needs to do this in milliseconds. Fig-

ure 3.39(e), show only the first seven threads because the eighth thread did not have

enough data collection to form the line graph.

The LU (Figure 3.39(f) shows a strange variance in memory usage during its

execution, but if we take into consideration the scale of the graph that is sized from

50 to 50 Kilobytes, that variation becomes insignificant. The average memory usage

is 163 Megabytes. We can observe a use of scalar memory, which emphasizes a

performance gain. Also, when threads are scheduling, a reduction in memory usage is

noticeable.

The MG (Figure 3.39(g)) is an intensive workload with a small working set. The

average usage is about 444 megabytes. It presents a linear use of memory and can

be seen a small variation when the threads are scheduling.

The SP (Figure 3.39(h) is a memory intensive workload and has the charac-

teristic of a scalar use of memory. The average memory usage in this application is

approximately 202 Megabytes. It is clearly perceptible that while the number of threads

is increasing, memory usage shows a scaling increase in its use, what suggest a gain

of performance.

222

Finally, the UA (Figure 3.39(i)) is an memory-intensive workload that uses an

average of 136 Megabytes. In this application it is visible the increase in memory

usage, almost being a scalar increase. Additionally, a decrease in memory usage is

also evident when the threads are scheduling. The scale of the graph should also

be highlighted, which uses 50 to 50 kilobytes, so small variations do not represent

anything significant.

 180000

 180500

 181000

 181500

 182000

 182500

 183000

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

BT

Number of Threads

Memory Usage (VmHWM)

(a)

 150000

 200000

 250000

 300000

 350000

 400000

 0 50 100 150 200 250

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

CG

Number of Threads

Memory Usage (VmHWM)

(b)

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 50 100 150 200

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

EP

Number of Threads

Memory Usage (VmHWM)

(c)

 600000

 700000

 800000

 900000

 1×10
6

 1.1×10
6

 1.2×10
6

 1.3×10
6

 1.4×10
6

 0 50 100 150 200

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

FT

Number of Threads

Memory Usage (VmHWM)

(d)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 2 4 6 8 10 12 14 16 18

 1 2 3 4 5 6 7

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

IS

Number of Threads

Memory Usage (VmHWM)

(e)

 163150

 163200

 163250

 163300

 163350

 163400

 163450

 163500

 0 50 100 150 200

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

LU

Number of Threads

Memory Usage (VmHWM)

(f)

 428000

 432000

 436000

 440000

 444000

 448000

 0 5 10 15 20 25 30 35 40 45

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

MG

Number of Threads

Memory Usage (VmHWM)

(g)

 190000

 192000

 194000

 196000

 198000

 200000

 202000

 204000

 206000

 208000

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

SP

Number of Threads

Memory Usage (VmHWM)

(h)

 136000

 136050

 136100

 136150

 136200

 136250

 136300

 136350

 136400

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

M
e

m
o

ry
 U

s
a

g
e

 (
k
B

)

Timestamps

UA

Number of Threads

Memory Usage (VmHWM)

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.39: Performance Characterization of Scientific Applications (Memory Usage).

223

3.4.1.3 Disk I/O

The I/O disk is represented in this evaluation by read and write per second.

As explained before, the NPB suite using the OMP implementation are processor and

memory intensive applications, so all programs make sporadic disk usage (GUPTA;

MILOJICIC, 2011). Therefore it was expected that the I/O disk would not be signif-

icantly used as well as demonstrated by the authors Cheveresan et al. (2007) and

Antoniou (2012). In fact, as we can see in Figure 3.40, disk I/O does not provide signif-

icant variations. Moreover, in this evaluation, the scale of the figure is small to represent

the differences and, as we can see, the readings and the writings have almost linear

results.

3.4.1.4 Cache Miss

Cache miss has an important role in the NPB suite, as it is can significantly

affects applications behavior, especially in high-performance of applications. Accord-

ingly, the authors Cheveresan et al. (2007) suggest that HPC applications are governed

by the cache miss latency and the ability to transmit data to the processor. Thus, the

Figures 3.41(a) and 3.41(b) shows the cache miss of the NPB applications, which were

benchmarked in the native environment. As we might expect, CPU-intensive applica-

tions such as CG, SP and UA, and which have large working sets as LU, have high

cache miss rates (CHENG; CHEN, 2013a), especially on the first and second threads.

Thus, these memory-intensive applications (Figures 3.39(b), 3.39(h), 3.40(i)), and hav-

ing significantly larger working sets (3.39(f)), frequently require to others levels of cache

instructions, causing an increase of cache misses (FERDMAN; ADILEH; KOCBER-

BER; VOLOS; ALISAFAEE; JEVDJIC; KAYNAK; POPESCU; AILAMAKI; FALSAFI,

2012).

However, as we can see, in the second thread, almost all applications have a

significant increase in the number of cache misses. This can occur because of the ad-

224

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160 180

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

BT I/O

Number of Threads

MD0 Read/s MD0 Write/s

(a)

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200 250

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

CG I/O

Number of Threads

MD0 Read/s MD0 Write/s

(b)

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

EP I/O

Number of Threads

MD0 Read/s MD0 Write/s

(c)

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

FT I/O

Number of Threads

MD0 Read/s MD0 Write/s

(d)

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14 16 18

 1 2 3 4 5 6 7

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

IS I/O

Number of Threads

MD0 Read/s MD0 Write/s

(e)

 0.35

 0.4

 0.45

 0.5

 0 50 100 150 200

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

LU I/O

Number of Threads

MD0 Read/s MD0 Write/s

(f)

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

MG I/O

Number of Threads

MD0 Read/s MD0 Write/s

(g)

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

SP I/O

Number of Threads

MD0 Read/s MD0 Write/s

(h)

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

 1 2 3 4 5 6 7 8

R
e

a
d

/s
 |
 W

ri
te

/s

Timestamps

UA I/O

Number of Threads

MD0 Read/s MD0 Write/s

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.40: Performance Characterization of Scientific Applications (I/O).

dition of threads, so the cache must be quickly replaced with new instructions (data) of

the workloads, this concurrency for cache causes more cache misses (BIENIA, 2011).

In contrast, MG, IS, and EP applications that have small working sets show only a small

number of cache misses.

3.4.2 HPC Scenario

In this environment, benchmarks were performed using full native machine

resources in only one instance. A script with a loop of repetitions was used to execute

225

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

1 2 3 4 5 6 7 8

N
u
m

b
e
r

Number of Threads

Cache Miss

LU MG SP UA

(a)

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8

N
u
m

b
e
r

Number of Threads

Cache Miss

BT CG EP FT IS

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.41: Performance Characterization of Scientific Applications (Cache Miss).

the benchmarks one after another, that is, the benchmarks were never run at the same

time.

The NAS Parallel Benchmark was executed in each instance, scheduling from

1 to 8 threads, totaling eight separate runs with 15 executions each. In addition, two

cloud-based were deployed, one with the CloudStack LXC-based cloud (container vir-

tualization) and other with the CloudStack KVM-based cloud (full virtualization). Finally,

the Native environment was benchmarked to compare it with the two based clouds.

This methodology can also be seen in the Figure 3.42.

BT is an application that focuses on floating point performance. Represents

a computation in a regular 3D grid and executes a solution of a tridiagonal system

of equations (CHEVERESAN; RAMSAY; FEUCHT; SHARAPOV, 2007). This applica-

tion experiences a loss of performance over CPU usage (Figure 3.38(a)), especially

in odd-numbered threads. A thorough study of this problem is necessary to justify its

occurrence. Referring to memory (Figure 3.39(a)), we can see that BT has a growth

in its use (not considered representative, given the size of its scale) as the number of

threads increases. The results of the cache miss (Figure 3.41(b)) show a loss con-

sidered medium, which decreases as the number of threads increases. The execution

226

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.42: Methodology followed in the evaluation of scientific applications in high
performance scenario.

time represented in the Figure3.43(a) shows that the LXC-based cloud (container) got

results very close to the native environment, the same result of Xavier et al. (2013) and

Cheng and Chen (2013b). In addition, a overhead is perceived in the KVM-based cloud

and this was already expected due to the fact that the virtualization layer adds more

instructions that need to be managed by the CPU. This involves more information to

treat and bufferization by the CPU that cause a degradation of the receive throughput

rate compared to native performances Reddy and Rajamani (2014), and can also be

targeted to context switch of the core load.

CG concentrates on irregular communication and is an intensive memory ap-

plication (Figure 3.39(b)). This application has performance loss related to the core

load (Figure 3.38(b)), specifically in the third thread. What caught our attention is the

lack of cache (Figure 3.41(b)) where CG presents the highest rates among all applica-

tions in the NPB suite. Another relevant feature is that the CG uses a large number of

small messages Saini et al. (2012), and has a large set of work, this may be the reason

for the high number of cache miss. In Figure 3.43(b) it is shown that performance in

227

the native environment and in the LXC-based cloud is very close and a overhead is

noticed in the KVM-based cloud. This overhead can be directed among other factors

for the high number of cache misses and also the context switch presented. In addition,

the authors Regola and Ducom (2010) emphasized that virtualization penalty is most

significant in benchmarks that requires large amounts of communication or memory

access.

SP is an application focused on floating point performance. Wijngaart, Srid-

haran and Lee (2012) suggests that SP and BT are functionally identical, and any

derived analysis for BT could be applied to SP. This application also presents problems

related to its use of core load (Figure 3.38(i)) mainly in threads with odd numbers, a

problem that has already been presented and needs to be better studied. A noticeable

characteristic is the scalar use of memory (Figure 3.39(h)) that follows the increase

of threads. In addition, the SP has high cache miss rates (Figure 3.41(a)) that had a

considerable increase in the second thread and soon afterwards shows a stabilization,

but still high. As we can see in Figure 3.43(c), the LXC cloud-based performance is

almost identical to the native environment. In addition, an overhead is displayed in the

KVM based cloud and this can be directed among other factors to the cache miss and

its CPU usage. In addition, the authors Regola and Ducom (2010) emphasize that SP

is an intensive workload in memory, so it requires large amounts of memory access

and ends up suffering virtualization penalties.

EP is a floating-point performance application. As suggested by Vogel et al.

(2016), the EP has no task dependency. The main characteristic of this application can

be seen in its use of core load (Figure 3.38(c)) which it presents a high performance

gain, using CPU resources intelligently. In addition, the cache miss (Figure 3.41(b))

and memory usage (Figure 3.39(c)) demonstrates that this application requires less

memory capacity and has one of the lowest cache miss rates, respectively. As we can

see in Figure 3.43(d), the native environment and the LXC and KVM cloud based are

identical. This application presents the actual context of parallel processing. It is no-

228

ticed that in each increase of threads, the execution time has decreased considerably.

This means that the performance gain follows at levels close to the recommended one,

with small differences between the environments. This performance can be directed

primarily to the way this application uses processor resources. In addition, EP have

short execution times (HONG; KIM; KIM; PARK; YOO, 2014) and small set of work,

so overhead is reduced. Moreover, the authors Hashimoto and Aida (2012), says that

the performance degradation in EP is minimum, because EP requires less memory

capacity.

FT is a memory-intensive application and is focused on "everything for all com-

munication". The Figure 3.39(d) shows that the FT uses about 13 Gigabytes for its

execution, confirming to be the application that has the highest use of memory in the

NAS suite. Regarding to core load (Figure 3.38(d)), this application presents some

loss in performance, mainly if we observe the context switch that happens. In addition,

FT presents medium cache miss rates 3.41(b). The execution time (Figure 3.43(e))

shows that FT has good gain of performance in the virtual environment, with results

identical to the native environment. A overhead is noticed in the KVM based cloud,

especially in the first threads. This overhead is reduced as the number of threads in-

creases. This behavior is also displayed in its cache miss evaluation (Figure 3.41(b)),

where it has a higher number of cache misses in the first threads and decreases as

the number of threads increases. This suggests among other factors that FT in the full

virtualization (KVM) environment suffers penalties in the first threads due to its cache

miss and unbalanced use of cores.

UA is an application that focuses on irregular communication. It is character-

ized as memory intensive (Figure 3.39(i)) and has high rates of cache miss (Figure

3.41(a), mainly in the second thread. Regarding to its core load, UA demonstrates

problem in the use of cores, especially in odd threads and is also noticeable the con-

text switch. Its execution time presents results very close in the three environments.

However, a overhead is perceptible in LXC and KVM based cloud, mainly in second

229

thread. This can be addressed among other factors to its high rates of cash misses

and mainly to the context switch that is presented in the core load usage.

IS is an intensive memory application with a focus on integer performance.

This application has some specific characteristics, such as the smallest working set,

the fastest execution time, and the lowest cache miss rate (Figure 3.41(b)) among

all applications in the NPB suite. In addition, the evaluation of the core load (Figure

3.38(e)) shows problems in the direction of loads to specific CPU’s, a contest switch

problem. As we can see in Figure 3.43(g), the LXC-based cloud and the native environ-

ment are practilly identical. We can perceive a overhead in the KVM based-cloud. As

suggested by Huang et al. (2006) applications with intensive communication, such as

IS a CG, has worse performance in the virtualized environment. In addition, the author

Strazdins et al. (2012) also suggests that IS does not scale well. This result is seen in

many articles in the literature, and overhead can be addressed among other factors for

the short execution time of IS (WALTERS; CHAUDHARY; CHA; GUERCIO JR; GALLO,

2008), and especially for the use of the processor, demonstrating that this application

does not have an efficient scheduling.

LU is an application with focus on irregular communication and also it has a

large working set. As we can see in Figure 3.38(f), LU does not have a high gain in

performance in the first few threads regarding core load. In addition, it has a strange

variance in memory usage (Figure 3.39(f)), but shows an increase in use as the num-

ber of threads increases. The cache miss of LU (Figure 3.41(a)) is one of the highest

in NPB suite, reaching its peak in the second thread. The LU execution time (Figure

3.43(h)) shows nearly equal results in the LXC-based cloud with the native environ-

ment. A overhead is noticed in the fully virtualized environment (KVM-based cloud),

especially in the first 3 threads. It can be explained, among other variants, to its high

cache miss rate, which reaches its peak in the first 3 threads. In addition, as explained

by Regola and Ducom (2010) LU requires large amounts of memory access so it suf-

fers from virtualization penalties.

230

MG is a workload with focus on regular communication. It does not present a

good balance in the use of the core (Figure 3.38(g)) occurring several context switch

in its execution. The memory results (Figure 3.39(g)) shows that this application is a

memory intensive. In addition, it presents good results in cache miss (Figure 3.41(a)).

In its execution time (Figure 3.43(i)) MG presents a considerable gain in performance

as the threads increase. The native and the LXC-based cloud shows the same result

and a overhead is noticed in KVM-based cloud. This can be addressed, among a set

of factors, to the balance in utilization of the cores processor, whats suggests that this

application have problems in load balancing regarding to CPU usage. In addition, as

this benchmark requires large amounts of memory access Regola and Ducom (2010),

the virtualization penalty is most significant.

3.4.3 Multi-tenancy Scenario

The multi-tenacy environment was build thinking on running applications on

concurrent users. Its definition can be seen in the section 2.2.11. We create a method-

ology of six configurations. Three of them executed concurrent same applications and

the other three executed concurrent different applications. The next sections will de-

scribe this six configurations.

3.4.3.1 Configuration 1

This configuration can be seen in Figure 3.44, which NAS Parallel Benchmark

was executed in two concurrent instances. This instances used 1,2,3 and 4 threads

totalizing 8 threads because the applications were executed at same time. In addition,

in the cloud environment the service offer was splitted between the two instances.

231

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

bt (Execution−Time)

native LXC KVM

(a)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

cg (Execution−Time)

native LXC KVM

(b)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

sp (Execution−Time)

native LXC KVM

(c)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

ep (Execution−Time)

native LXC KVM

(d)

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

ft (Execution−Time)

native LXC KVM

(e)

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

ua (Execution−Time)

native LXC KVM

(f)

 0

 1

 2

 3

 4

 5

 6

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

is (Execution−Time)

native LXC KVM

(g)

 0

 50

 100

 150

 200

 250

 300

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

lu (Execution−Time)

native LXC KVM

(h)

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4 5 6 7 8

S
e

c
o

n
d

s

Number of Threads

mg (Execution−Time)

native LXC KVM

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.43: High Performance Scenario.

232

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.44: Conf1: Methodology followed in the evaluation of scientific applications in
multi-tenancy scenario.

3.4.3.1.1 Same Applications

In this methodology (Figure 3.45), same applications were splitted over two

concurrent instances in the LXC and KVM based clouds and in the Native environment

over two users.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.45: Description of NPB multi-tenancy scenario with same applications on 2
concurrent users.

233

The applications BT, EP, FT and MG show small differences results in their

execution time, being practically identical in the three environments (Native, LXC and

KVM based clouds) and even very similar to HPC scenario. CG shows an overhead in

the KVM and also overhead in the LXC. This result demonstrates that this application

with high cache miss rates (Figure 3.41(b)) and context switching (Figure 3.38(b)) have

it execution even more degraded in the concurrency environment.

IS (Figure 3.46(g) and 3.47(g)) shows a KVM overhead and also an LXC ob-

taining better results than the native environment. The overhead presented in the KVM-

based cloud demonstrates that this application does not have an efficient scheduling

Gupta et al. (2013) and this can be seen in the use of the core load (Figure 3.38(e)).

As the native environment does not provide isolation for its users, they compete for

the use of resources, which may explain the result that shows the native environment

achieving worse results than those presented by the LXC-based cloud.

On the other hand, LU (Figure 3.46(h) and 3.47(h), SP (Figure 3.46(c) and

3.47(c)) and UA (Figure 3.46(f) and 3.47(f)) applications present KVM overhead and

LXC with results close to the native environment. These applications have similar

problems regarding to high cache miss rates (Figure 3.41(a) and 3.41(b)) and also

problems with high rates of contest switching. Thus, in the multi-tenancy scenario

where there is competition among users for resources, the overhead shown in the

HPC environment is enhanced.

3.4.3.1.2 Different Applications

In this methodology, the multi-tenancy environment is represented by the ex-

ecution of different applications of the NPB suite that are splitted into two users as

shown in Figure 3.48.

The FT (Figure 3.50(b)), EP (Figure 3.49(b)) and MG (Figure 3.49(e)) applica-

234

 50

 100

 150

 200

 250

 300

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

bt−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

cg−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

sp−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ep−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ft−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ua−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

is−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

lu−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

mg−user1 (Same Application with 2 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.46: Multi-tenancy-User1 Scenario (Same Application with 2 concurrent
users).

235

 50

 100

 150

 200

 250

 300

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

bt−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

cg−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

sp−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ep−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ft−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ua−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

is−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

lu−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

mg−user2 (Same Application with 2 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.47: Multi-tenancy-User2 Scenario (Same Application with 2 concurrent
users).

236

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.48: Description of NPB multi-tenancy environment with different applications
on 3 concurrent users.

tions present very close results in the three environments (native, LXC and KVM based

cloud). SP (Figure 3.50(c)), LU (Figure 3.49(d)) and BT (Figure 3.49(a)) demonstrate

overhead in KVM and the LXC based cloud presents results very close to the native

environment. This result is also seen in the HPC Scenario and suggests that these

applications suffer overhead due to the addition of the virtualization layer. With the

addition of this layer, more instructions need to be managed by the CPU, this involves

more information to handle and as a result cause performance degradation Reddy and

Rajamani (2014). A low performance in KVM-based cloud is presented in the CG (Fig-

ure 3.50(a)) and IS (Figure 3.49(c)), which also have already performed poorly on the

KVM in the HPC scenario. CG suffers from high cache misses rates an context switch-

ing and IS is presented in the literature as an application with programming problems

in virtualized environments (HUANG; LIU; ABALI; PANDA, 2006). Finally, UA (Figure

3.50(d)) presents overhead on both the LXC-based cloud and the KVM-based cloud,

especially on the second thread. This result can be addressed by the performance

losses presented in the processor utilization and by the cache miss rate that intensifies

in the second thread.

237

 50

 100

 150

 200

 250

 300

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

bt−user1 (Different Applications with 2 concurrent users)

bt−LXC−user1
bt−Native−user1

bt−KVM−user1

bt−LXC−HPC
bt−Native−HPC

bt−KVM−HPC

(a)

 20

 30

 40

 50

 60

 70

 80

 90

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ep−user1 (Different Applications with 2 concurrent users)

ep−LXC−user1
ep−Native−user1

ep−KVM−user1

ep−LXC−HPC
ep−Native−HPC

ep−KVM−HPC

(b) (c)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

is−user1 (Different Applications with 2 concurrent users)

is−LXC−user1
is−Native−user1

is−KVM−user1

is−LXC−HPC
is−Native−HPC

is−KVM−HPC

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

lu−user1 (Different Applications with 2 concurrent users)

lu−LXC−user1
lu−Native−user1

lu−KVM−user1

lu−LXC−HPC
lu−Native−HPC

lu−KVM−HPC

(d)

 4

 6

 8

 10

 12

 14

 16

 18

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

mg−user1 (Different Applications with 2 concurrent users)

mg−LXC−user1
mg−Native−user1

mg−KVM−user1

mg−LXC−HPC
mg−Native−HPC

mg−KVM−HPC

(e)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.49: Multi-tenancy-User1 Scenario (Different Applications with 2 concurrent
users).

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

cg−user2 (Different Applications with 2 concurrent users)

cg−LXC−user2
cg−Native−user2

cg−KVM−user2

cg−LXC−HPC
cg−Native−HPC

cg−KVM−HPC

(a)

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ft−user2 (Different Applications with 2 concurrent users)

ft−LXC−user2
ft−Native−user2

ft−KVM−user2

ft−LXC−HPC
ft−Native−HPC

ft−KVM−HPC

(b)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

sp−user2 (Different Applications with 2 concurrent users)

sp−LXC−user2
sp−Native−user2

sp−KVM−user2

sp−LXC−HPC
sp−Native−HPC

sp−KVM−HPC

(c)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2 3 4

S
e

c
o

n
d

s

Number of Threads

ua−user2 (Different Applications with 2 concurrent users)

ua−LXC−user2
ua−Native−user2

ua−KVM−user2

ua−LXC−HPC
ua−Native−HPC

ua−KVM−HPC

(d)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.50: Multi-tenancy-User2 Scenario (Different Applications with 2 concurrent
users).

238

3.4.3.2 Configuration 2

This configuration can be seen in Figure 3.51, which NAS Parallel Benchmark

was executed in three concurrent instances. The first two instances had three threads

allocated and the third instance had only two threads, totalizing the 8 threads available.

In addition, in the cloud environment the service offer was splitted between the three

instances.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.51: Conf2: Methodology followed in the evaluation of scientific applications in
multi-tenancy scenario.

3.4.3.2.1 Same Applications

In this methodology (Figure 3.52), same applications were splitted over three

concurrent instances in the LXC and KVM based clouds and in the Native environment

over three users.

EP (Figure 3.53(d), 3.54(d), 3.55(d)), BT (Figure 3.53(a), 3.54(a), 3.55(a)), and

UA (Figure 3.53(f), 3.54(f), 3.55(f)) workloads show few variations among virtualization

technologies, with similar results already shown in previous tests.

239

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.52: Description of NPB multi-tenancy environment with same applications on
3 concurrent users.

CG user3 (Figure 3.55(b)) shows a overhead in LXC. However, this result is

minimized, taking into account the standard deviation that closely resembles the native

environment. In addition, on user2 (Figure 3.54(b)) and 3 (Figure 3.55(b)) a overhead in

KVM is noticed, we suspect that the cache-miss, context-switch, and virtualization layer

addition factors are responsible for this result. FT (Figure 3.53(e), 3.54(e), 3.55(e)) and

MG (Figure 3.53(i), 3.54(i), 3.55(i)) demonstrates a overhead in KVM and the LXC with

better results than native environment. As MG requires large amounts of memory

access Regola and Ducom (2010), the virtualization penalty is most significant. In

addition, as explained before the native environment does not provide efficient resource

isolation between users, therefore the users compete for resources, which leads to

performance degradation.

IS (Figure 3.53(g), 3.54(g), 3.55(g)) presents a high overhead in KVM, a result

that has already been seen in the environment without competition. The behavior of

the native environment is what attracts attention, showing inferior results to the LXC

240

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user1 (Same Application with 3 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.53: Multi-tenancy-User1 Scenario (Same Application with 3 concurrent
users).

environment. This result is probably induced by the high competition of resources that

occurs in the native environment.

LU in turn has large variations in its results. The native environment performs

poorly on the first (Figure 3.53(h)) and second users (Figure 3.54(h)). However in the

third user (Figure 3.55(h)) the native environment has a performance lower than LXC

and higher than KVM. We believe that this large variation of results comes from the

way this application uses the processor and also the high cache miss rate presented

in the first two threads.

241

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user2 (Same Application with 3 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.54: Multi-tenancy-User2 Scenario (Same Application with 3 concurrent
users).

242

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user3 (Same Application with 3 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.55: Multi-tenancy-User3 Scenario (Same Application with 3 concurrent
users).

243

3.4.3.2.2 Different Applications

In this methodology, the multi-tenancy environment is represented by the ex-

ecution of different applications of the NPB suite that are splitted into two users as

shown in Figure 3.56.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.56: Description of NPB multi-tenancy scenario with different applications on 3
concurrent users.

BT (Figure 3.57(a)) and EP (Figure 3.57(b)) benchmarks show results very

close to the native environment. The CG (Figure 3.58(a)) application shows KVM over-

head, a result already shown in other tests, which we believe happens due to high rates

of context switching. FT (Figure 3.59(a)), LU (Figure 3.58(b)), MG (Figure 3.59(b)) and

SP (Figure 3.58(c)) demonstrated low overhead in KVM, which can be directed to the

addition of the virtualization layer.

IS (Figure 3.57(c)) showed low overhead KVM and the LXC-based cloud per-

forms better than native. This behavior is probably the result of high competition for

resources in the native environment. Finally LU 3.58(b) presents overhead in LXC and

KVM. This particular application has shown several behaviors in the concurrency envi-

ronment, which we believe to be due to the way it uses the resources coming from the

processor, which presents many performance losses.

244

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user1 (Different Applications with 3 concurrent users)

bt−LXC−user1
bt−Native−user1

bt−KVM−user1

bt−LXC−HPC
bt−Native−HPC

bt−KVM−HPC

(a)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user1 (Different Applications with 3 concurrent users)

ep−LXC−user1
ep−Native−user1

ep−KVM−user1

ep−LXC−HPC
ep−Native−HPC

ep−KVM−HPC

(b)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user1 (Different Applications with 3 concurrent users)

is−LXC−user1
is−Native−user1

is−KVM−user1

is−LXC−HPC
is−Native−HPC

is−KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.57: Multi-tenancy-User1 Scenario (Different Applications with 3 concurrent
users).

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user2 (Different Applications with 3 concurrent users)

cg−LXC−user2
cg−Native−user2

cg−KVM−user2

cg−LXC−HPC
cg−Native−HPC

cg−KVM−HPC

(a)

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user2 (Different Applications with 3 concurrent users)

lu−LXC−user2
lu−Native−user2

lu−KVM−user2

lu−LXC−HPC
lu−Native−HPC

lu−KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2
S

e
c
o

n
d

s

Number of Threads

sp−user2 (Different Applications with 3 concurrent users)

sp−LXC−user2
sp−Native−user2

sp−KVM−user2

sp−LXC−HPC
sp−Native−HPC

sp−KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.58: Multi-tenancy-User2 Scenario (Different Applications with 3 concurrent
users).

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user3 (Different Applications with 3 concurrent users)

ft−LXC−user3
ft−Native−user3

ft−KVM−user3

ft−LXC−HPC
ft−Native−HPC

ft−KVM−HPC

(a)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user3 (Different Applications with 3 concurrent users)

mg−LXC−user3
mg−Native−user3

mg−KVM−user3

mg−LXC−HPC
mg−Native−HPC

mg−KVM−HPC

(b)

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user3 (Different Applications with 3 concurrent users)

ua−LXC−user3
ua−Native−user3

ua−KVM−user3

ua−LXC−HPC
ua−Native−HPC

ua−KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.59: Multi-tenancy-User3 Scenario (Different Applications with 3 concurrent
users).

245

3.4.3.3 Configuration 3

This is the last configuration and can be seen in Figure 3.60, which NAS Par-

allel Benchmark was executed in four concurrent instances. Each instance allocated

2 threads, totalizing the 8 threads available. In addition, in the cloud environment the

service offer was splitted between the four instances.

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.60: Conf3: Methodology followed in the evaluation of scientific applications in
multi-tenancy scenario.

3.4.3.3.1 Same Applications

In this methodology (Figure 3.61), same applications were splitted over four

concurrent instances in the LXC and KVM based clouds and in the Native environment

over four users.

EP (Figures 3.62(d), 3.63(d), 3.64(d), 3.65(d)) workload shows its execution

time with similar results in the three environments, suggesting that this application can

be used in a competitive environment without significant losses.

246

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.61: Description of NPB multi-tenancy environment with same applications on
4 concurrent users.

IS (Figure 3.62(g), 3.63(g), 3.64(g), 3.65(g)), FT (Figure 3.62(e), 3.63(e), 3.64(e),

3.65(e)), CG (Figure 3.62(b), 3.63(b), 3.64(b), 3.65(b)), LU (Figure 3.62(h), 3.63(h),

3.64(h), 3.65(h)), MG (Figure 3.62(i), 3.63(i), 3.64(i), 3.65(i)), and SP (Figure 3.62(c),

3.63(c), 3.64(c), 3.65(c)) workloads demonstrate performance losses in the native en-

vironment, suggesting that with competition for resources, applications tend to work

better with virtualization than in the native environment, mainly due to the isolation that

is one of the main characteristics of the virtual environment.

Although the UA (Figure 3.62(f), 3.63(f), 3.64(f), 3.65(f)) application presents

differences between the environments, if we take into account the standard deviation

of the execution time, we realize that the results are very similar.

3.4.3.3.2 Different Applications

In this methodology, the multi-tenancy environment is represented by the ex-

ecution of different applications of the NPB suite that are splitted into four users as

247

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user1 (Same Application with 4 concurrent users)

Native−user1
LXC−user1
KVM−user1

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.62: Multi-tenancy-User1 Scenario (Same Application with 4 concurrent
users).

shown in Figure 3.66.

EP (Figure 3.67(a) and FT 3.70(a) show very close execution times in all envi-

ronments, which demonstrates that these applications in this case can be used effec-

tively. The applications BT (Figure 3.68(a)), CG (Figure 3.69(a)), IS (Figure 3.70(b)),

MG (Figure 3.68(b)) and UA (Figure 3.67(b)) demonstrate performance degradation

based on the KVM based cloud. This behavior can be directed to the virtualization

layer that was added as well as concurrency presented in this methodology. However,

in order to confirm this justification a thorough study needs to be done. In contrast, LU

248

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user2 (Same Application with 4 concurrent users)

Native−user2
LXC−user2
KVM−user2

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.63: Multi-tenancy-User2 Scenario (Same Application with 4 concurrent
users).

applications (Figure 3.70(c)) and SP (Figure 3.69(b)) demonstrate better performance

in the KVM-based cloud, emphasizing that in a competitive environment, the isolation

presents advantages for complete virtualization.

249

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user3 (Same Application with 4 concurrent users)

Native−user3
LXC−user3
KVM−user3

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.64: Multi-tenancy-User3 Scenario (Same Application with 4 concurrent
users).

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e
c
o
n
d
s

Number of Threads

ep−user1 (Different Applications with 4 concurrent users)

ep−LXC−user1
ep−Native−user1

ep−KVM−user1

ep−LXC−HPC
ep−Native−HPC

ep−KVM−HPC

(a)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e
c
o
n
d
s

Number of Threads

ua−user1 (Different Applications with 4 concurrent users)

ua−LXC−user1
ua−Native−user1

ua−KVM−user1

ua−LXC−HPC
ua−Native−HPC

ua−KVM−HPC

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.67: Multi-tenancy-User1 Scenario (Different Applications with 4 concurrent
users).

250

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e

c
o

n
d

s

Number of Threads

bt−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(a)

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e

c
o

n
d

s

Number of Threads

cg−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e

c
o

n
d

s

Number of Threads

sp−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(c)

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

1 2

S
e

c
o

n
d

s

Number of Threads

ep−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(d)

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(e)

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

ua−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(f)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(g)

 100

 120

 140

 160

 180

 200

 220

 240

 260

 280

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(h)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e

c
o

n
d

s

Number of Threads

mg−user4 (Same Application with 4 concurrent users)

Native−user4
LXC−user4
KVM−user4

Native−HPC
LXC−HPC
KVM−HPC

(i)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.65: Multi-tenancy-User4 Scenario (Same Application with 4 concurrent
users).

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

1 2

S
e
c
o
n
d
s

Number of Threads

bt−user2 (Different Applications with 4 concurrent users)

bt−LXC−user2
bt−Native−user2

bt−KVM−user2

bt−LXC−HPC
bt−Native−HPC

bt−KVM−HPC

(a)

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

1 2

S
e
c
o
n
d
s

Number of Threads

mg−user2 (Different Applications with 4 concurrent users)

mg−LXC−user2
mg−Native−user2

mg−KVM−user2

mg−LXC−HPC
mg−Native−HPC

mg−KVM−HPC

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.68: Multi-tenancy-User2 Scenario (Different Applications with 4 concurrent
users).

251

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.66: Description of NPB multi-tenancy environment with different applications
on 4 concurrent users.

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

1 2

S
e
c
o
n
d
s

Number of Threads

cg−user3 (Different Applications with 4 concurrent users)

cg−LXC−user3
cg−Native−user3

cg−KVM−user3

cg−LXC−HPC
cg−Native−HPC

cg−KVM−HPC

(a)

 100

 120

 140

 160

 180

 200

 220

 240

1 2

S
e
c
o
n
d
s

Number of Threads

sp−user3 (Different Applications with 4 concurrent users)

sp−LXC−user3
sp−Native−user3

sp−KVM−user3

sp−LXC−HPC
sp−Native−HPC

sp−KVM−HPC

(b)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.69: Multi-tenancy-User3 Scenario (Different Applications with 4 concurrent
users).

252

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

1 2

S
e

c
o

n
d

s

Number of Threads

ft−user4 (Different Applications with 4 concurrent users)

ft−LXC−user4
ft−Native−user4

ft−KVM−user4

ft−LXC−HPC
ft−Native−HPC

ft−KVM−HPC

(a)

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

1 2

S
e

c
o

n
d

s

Number of Threads

is−user4 (Different Applications with 4 concurrent users)

is−LXC−user4
is−Native−user4

is−KVM−user4

is−LXC−HPC
is−Native−HPC

is−KVM−HPC

(b)

 100

 120

 140

 160

 180

 200

 220

 240

 260

1 2

S
e

c
o

n
d

s

Number of Threads

lu−user4 (Different Applications with 4 concurrent users)

lu−LXC−user4
lu−Native−user4

lu−KVM−user4

lu−LXC−HPC
lu−Native−HPC

lu−KVM−HPC

(c)

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.70: Multi-tenancy-User4 Scenario (Different Applications with 4 concurrent
users).

3.5 HYPOTHESIS TESTS

In the previous sections all the experiments were represented in graphs, and

we could perceive that some differences between the native, LXC and KVM based

cloud regard to its execution time. To show whether this differences are significant

it must be applied a statistical process. Therefore, in this section it is presented the

hypothesis and also described the statistical procedure used.

With the results obtained from the experiments, more specifically from the ap-

plications, it is possible to extract informations about its behavior using the statistical

method. To do this, it was used the IBM SPSS14 which is frequently used in experi-

ments and statistical analysis to the hypothesis tests, avoiding calculation with complex

formulas.

The margin of 95% of confiablity was used in the statistical analisys with SPSS.

It means that in the comparisons done by the program, if the significance value is

greater than 0,05 (5%), it is not possible to state that the samples are significantly

different.

14https://www.ibm.com/us-en/marketplace/spss-statistics

253

The entire statistical process described below can be seen in Figure 3.71.

This process first performed the sample collection. Subsequently, the normality test

was done. This test is performed to determine if the sample distribution is on a nor-

mal curve, determining whether these are parametric or non-parametric. Normality

exists when the Kolmogorov-Smirnov and Shapiro-Wilk approaches have a greater

significance than 0,05 (Sig > 0,05), thus making the sample parametric. Considering

that the samples in this thesis are small (10), the author Field (2013) emphasizes that

the Sharpiro-Wilk approach should be used because it is specific for small samples.

Instead, the Kolgomorov-Smirnov approach is specific for samples greater than 30.

Then, the significance (Sig.) of the Shapiro-Wilk approach was used.

The next step was to perform the parametric or non-parametric test in each

sample previously defined by the normality test. In the parametric samples the T Test

was applied, which paired the samples and compared them to obtain the result of

significance. On the other hand, in the non-parametric samples the Wilcoxon test was

applied, which ranks the samples and also compares them to obtain the significance.

The significance of these tests (T test and Wilcoxon test) will indicate whether the

comparison is significantly different or not using the 95% confidence margin. That is,

when the level of significance reaches the margin greater than 0.05 (Sig < 0,05), it is

not possible to affirm that there are significant differences between the samples

254

Source: Baum, Maliszewski, Griebler, 2017.

Figure 3.71: Statistical Process.

As many statistical tests were done, the results in the item Sig. of each table

show only those with significant or non-significant difference. In order to make this

choice, the results were previously analyzed taking as a rule the addition of those

that had the lowest number of occurrences, that is, if the test has a higher number of

samples with significantly different results, only the non-significant ones are arranged in

the tables and it is assumed that most of the results indicates that there is a significant

differences.

3.5.0.1 Formal Configuration of the Experiments

The execution time metric (Et) provided by the benchmarks refers to differ-

ences between the final execution time (FEt) and the initial execution time (IEt), rep-

resented in the Equation 3.1.

255

Et = FEt− IEt (3.1)

3.5.1 First Hypothesis

The performance characteristics of the scientific and enterprise workloads are

statistically different among deployed cloud scenarios.

The descriptive hypothesis was formalized by dividing NAS and PARSEC suites

in order to verify the significance among the samples of the deployed cloud scenarios

(LXC and KVM). In addition, the variables used in the statistical hypotheses are: EtKN

for execution time in KVM cloud-based in NPB, EtLN for execution time in LXC cloud-

based in NPB, EtKP for execution time in KVM cloud-based in PARSEC and EtLP for

execution time in LXC cloud-based in PARSEC.

In relation to the execution time of the NPB-OMP suite the hypotheses are the

follows:

• H0: EtKN == EtLN

• H1: EtKN != EtLN

Therefore, through the analysis of the results obtained in the Sig, the great ma-

jority indicates that there are significant differences between the KVM and LXC cloud-

based in relation to the scientific applications (NPB-OMP suite), so the null hypothesis

(H0) is rejected, and thus assumes the alternative hypothesis (H1).

In relation to the execution time of the PARSEC suite the hypotheses are the

follows:

256

• H0: EtKP == EtLP

• H1: EtKP != EtLP

Therefore, through the statistical analysis, we prove the rejection of the null

hypothesis (H0), because most of the results attests significant differences between the

KVM and LXC cloud-based in relation to the enterprise applications (PARSEC suite),

and thus assumes the alternative hypothesis (H1).

The Table 3.3 is divided between the results of the NPB-OMP (KVM x LXC)

and PARSEC (KVM x LXC) suites, with the green column being the partition. The

results are arranged according to the scenario (with gray background), in this way in

the first column of each suite arranged in the table are represented the applications,

number of threads and in the multi-tenancy scenarios the corresponding user. In the

second column of each suite is represented the Sig. variable respecting the rule of

addition of the results with less occurrence. In both cases (NPB-OMP and PARSEC)

the lowest number of occurrences was Sig. > 0.05, or statistically non-different.

NPB-OMP SUITE (LXC X KVM) PARSEC SUITE (LXC X KVM)

High Performance High Performance

Application-Threads Sig. Application-Threads Sig.

EP-1 0,202 STREAMCLUSTER-6 0,057

EP-6 0,720 STREAMCLUSTER-8 0,288

FT-7 0,602 CANNEAL-8 0,849

Multi-Tenancy Same 2 Users DEDUP-8 0,902

User-Application-Threads Sig. FACESIM-2 0,059

USER1-EP-3 0,308 FACESIM-5 0,071

USER1-EP-4 0,053 X264-5 0,139

USER1-FT-4 0,093 CANNEAL-7 0,203

USER1-IS-2 0,153 VIPS-1 0,203

Continued on next page

257

Table 3.3 – Continued from previous page

USER1-IS-3 0,103 CANNEAL-6 0,285

USER1-IS-4 0,059 CANNEAL-5 0,508

USER1-MG-4 0,221 X264-1 0,878

USER1-SP-3 0,059 Multi-Tenancy Same 2 Users

USER1-UA-2 0,074 User-Application-Threads Sig.

USER2-EP-1 0,052 USER2-CANNEAL-1 0,198

USER2-FT-4 0,575 USER1-STREAMCLUSTER-2 0,230

USER2-MG-4 0,475 USER1-X264-3 0,305

USER1-MG-2 0,129 USER2-X264-3 0,366

USER1-MG-3 0,263 USER1-X264-4 0,404

USER2-EP-4 0,150 USER1-SWAPTIONS-4 0,413

USER2-IS-2 0,077 USER2-BLACKSCHOLES-1 0,504

USER2-IS3 0,235 USER1-FACESIM-4 0,520

USER2-IS-4 0,061 USER1-FACESIM-1 0,840

Multi-Tenancy Same 3 Users USER2-FACESIM-1 0,940

User-Application-Threads Sig. USER2-STREAMCLUSTER-4 0,203

USER1-IS-2 0,169 USER1-SWAPTIONS-4 0,241

USER2-IS-2 0,093 USER1-STREAMCLUSTER-4 0,285

USER2-LU-1 0,114 USER2-X264-1 0,386

USER2-MG-1 0,074 USER1-X264-1 0,575

USER2-MG-2 0,262 USER2-STREAMCLUSTER-3 0,799

USER2-SP-1 0,308 USER1-STREAMCLUSTER-3 0,959

USER2-SP-2 0,878 USER2-STREAMCLUSTER-2 0,959

USER2-UA-2 0,799 Multi-Tenancy Same 3 Users

USER3-CG-2 0,169 User-Application-Threads Sig.

USER3-EP-1 0,059 USER1-BLACKSCHOLES-1 0,050

USER1-LU-2 0,608 USER2-FACESIM-2 0,061

Continued on next page

258

Table 3.3 – Continued from previous page

USER1-MG-2 0,699 USER2-RAYTRACE-1 0,078

USER1-SP-2 0,158 USER3-STREAMCLUSTER-2 0,129

USER1-UA-2 0,076 USER2-BLACKSCHOLES-2 0,143

USER2-LU-2 0,068 USER2-CANNEAL-2 0,175

USER2-UA-1 0,625 USER1-BLACKSCHOLES-2 0,239

USER3-BT-2 0,158 USER1-STREAMCLUSTER-2 0,263

USER3-FT-2 0,641 USER3-BLACKSCHOLES-2 0,532

USER3-LU-2 0,592 USER2-FACESIM-1 0,835

Multi-Tenancy Same 4 Users USER1-X264-1 0,093

User-Application-Threads Sig. USER2-FREQMINE-2 0,114

USER1-CG-2 0,059 USER3-BODYTRACK-2 0,139

USER1-IS-2 0,838 USER1-VIPS-1 0,169

USER1-LU-1 0,203 USER2-STREAMCLUSTER-2 0,285

USER1-UA-2 0,074 USER3-FREQMINE-2 0,333

USER2-CG-1 0,093 USER2-X264-2 0,445

USER2-IS-1 0,059 USER2-BLACKSCHOLES-1 0,508

USER2-LU-1 0,959 USER2-X264-1 0,721

USER2-LU-1 0,959 USER3-VIPS-1 0,799

USER2-LU-2 0,114 Multi-Tenancy Same 4 Users

USER2-MG-2 0,059 User-Application-Threads Sig.

USER2-UA-2 0,959 USER2-BODYTRACK-2 0,059

USER3-CG-2 0,721 USER3-BLACKSCHOLES-2 0,095

USER3-FT-2 0,959 USER3-CANNEAL-1 0,126

USER3-IS-2 0,074 USER3-X264-1 0,274

USER3-LU-2 0,721 USER1-STREAMCLUSTER-2 0,322

USER4-CG-2 0,285 USER1-BODYTRACK-2 0,345

USER4-CG-2 0,285 USER2-X264-1 0,346

Continued on next page

259

Table 3.3 – Continued from previous page

USER4-SP-2 0,333 USER3-FACESIM-2 0,403

USER1-LU2 0,456 USER4-BODYTRACK-2 0,683

USER1-MG-1 0,217 USER3-STREAMCLUSTER-1 0,687

USER2-BT-2 0,059 USER2-STREAMCLUSTER-1 0,768

USER2-FT-2 0,464 USER1-FACESIM-2 0,768

USER2-IS-2 0,276 USER4-BLACKSCHOLES-2 0,833

USER3-LU-1 0,572 USER2-BLACKSCHOLES-1 0,884

USER3-SP-2 0,127 USER3-BLACKSCHOLES-1 0,947

USER4-BT-2 0,431 USER1-BLACKSCHOLES-2 0,575

USER4-LU-1 0,237 USER1-X264-1 0,059

Multi-TenancyDifferent 2 Users USER4-STREAMCLUSTER-2 0,074

User-Application-Threads Sig. USER3-SWAPTIONS-2 0,093

USER1-IS-3 0,507 USER4-FACESIM-2 0,114

USER1-IS-4 0,513 USER1-VIPS-2 0,139

USER1-EP-1 0,053 USER4-BLACKSCHOLES-1 0,445

USER1-MG-4 0,553 USER4-STREAMCLUSTER-1 0,508

USER2-CG-3 0,203 USER1-VIPS-1 0,799

USER2-CG-2 0,331 USER3-STREAMCLUSTER-2 0,878

USER2-UA-2 0,513 USER3-BODYTRACK-2 0,959

Multi-TenancyDifferent 3 Users Multi-Tenancy Diff 2 Users

User-Application-Threads Sig. User-Application-Threads Sig.

USER1-IS2 0,760 USER1-BLACKSCHOLES-1 0,353

USER2-CG-1 0,646 USER1-BLACKSCHOLES-2 0,071

USER2-CG-2 0,575 USER1-FREQMINE-4 0,276

Multi-TenancyDifferent 4 Users USER1-FREQMINE-3 0,513

User-Application-Threads Sig. USER2-CANNEAL-3 0,826

USER1-UA-2 0,241 USER2-STREAMCLUSTER-1 0,074

Continued on next page

260

Table 3.3 – Continued from previous page

USER2-MG-2 0,139 USER2-SWAPTIONS-4 0,093

USER3-CG-1 0,093 USER1-BODYTRACK-4 0,139

USER3-CG-2 0,959 USER1-FREQMINE-1 0,139

USER4-FT-2 0,086 USER1-X264-4 0,386

USER3-SP-1 0,124 USER2-CANNEAL-4 0,445

USER4-FT-1 0,767 USER2-CANNEAL-2 0,646

USER2-CANNEAL-1 0,721

USER2-STREAMCLUSTER-3 0,799

USER2-STREAMCLUSTER-2 0,959

USER2-STREAMCLUSTER-4 0,959

Multi-Tenancy Diff 3 Users

User-Application-Threads Sig.

USER2-X264-2 0,101

USER3-STREAMCLUSTER-2 0,093

USER1-CANNEAL-1 0,169

USER3-STREAMCLUSTER-1 0,959

Multi-Tenancy Diff 4 Users

User-Application-Threads Sig.

USER1-BLACKSCHOLES-1 0,321

USER1-BLACKSCHOLES-2 0,223

USER2-BODYTRACK2 0,959

USER4-X2641 0,646

Table 3.3: Statistical results in the SPSS analysis of the NPB-OMP and PASERC suite
[KVM X LXC].

261

3.5.2 Second Hypothesis

The performance characteristics of the scientific and enterprise workloads are

statistically different among deployed cloud scenarios.

To test this hypothesis, it was formalized by dividing them into: Compare the

LXC-based cloud computing workloads (NPB suite) against the native environment

and second compare KVM-based cloud workloads (NPB suite) against the native en-

vironment. In addition, the variables used in the statistical hypotheses are: EtK for

execution time in KVM cloud-based EtL for execution time in LXC cloud-based and

EtN for execution time in native environment.

The results of the NPB-OMP suite (LXC X Native) were treated by SPSS as

follows:

• H0: EtL == EtN

• H1: EtL != EtN

Through the statistical analysis, it is possible to reject the alternative hypothesis

(H1), because most of the results indicate non-significant differences between the LXC

Cloud-Based and Native environment and, therefore, assume null hypothesis (H0).

The results of the NPB-OMP suite (KVM X Native) were treated by SPSS as

follows:

• H0: EtK == EtN

• H1: EtK != EtN

262

In turn, after the statistical analysis, it is possible to reject the null hypothesis

(H0) because most of the results indicate significant differences between the KVM

Cloud-Based and Native environment and, therefore assume the alternative hypothesis

(H1).

The Table 3.4 is divided between the results of the NPB-OMP (LXC x Native)

and NPB-OMP (KVM x Native) suite, with the green column being the partition. The

results are arranged according to the scenario (with gray background), in this way in

the first column of each test (LXC x Native and KVM x Native) of the NAS-OMP suite

are represented the applications, number of threads and in the multi-tenancy scenar-

ios the corresponding user. In the second column of each test (LXC x Native and

KVM x Native) is represented the Sig. variable respecting the rule of addition of the

results with less occurrence. In case of NPB-OMP (LXC x Native) the lowest number

of occurrences was Sig. < 0,05, or statistically different. On the other hand, in case of

NPB-OMP (KVM x Native) the lowest number of occurrences was Sig. > 0,05, that is,

statistically non-different. It can be concluded that the NPB-OMP suite execution times

present non-significant differences in the comparison of LXC cloud-based and native

environment. However, in the comparison of NPB-OMP suite execution times among

KVM cloud-based and native environment the statistical results indicate significant dif-

ferences, emphasizing the overhead of KVM cloud-based.

NPB-OMP SUITE (LXC X NATIVE) NPB-OMP SUITE (KVM X NATIVO)

High Performance High Performance

Application-Threads Sig. Application-Threads Sig.

BT-1 0,005 EP-5 0,383

BT-2 0,005 EP-7 0,414

CG-2 0,013 EP-8 0,074

EP-5 0,028 FT-7 0,991

MG-4 0,036 FT-8 0,209

Continued on next page

263

Table 3.4 – Continued from previous page

UA-1 0,005 Multi-Tenancy Same 2 Users

UA-3 0,005 User-Application-Threads Sig.

UA-7 0,037 USER1-CG-3 0,103

BT-3 0,032 USER1-IS-2 0,959

BT-4 0,015 USER1-IS-3 0,333

BT-5 0,000 USER1-IS-4 0,333

CG-3 0,021 USER1-MG-4 0,333

CG-5 0,020 USER2-FT-4 0,386

CG-7 0,036 USER2-IS-3 0,083

FT-1 0,021 USER2-MG-2 0,126

LU-3 0,001 USER2-MG-3 0,074

MG-7 0,008 USER2-SP-4 0,508

MG-8 0,000 USER1-FT-4 0,362

SP-8 0,011 USER1-MG-2 0,868

UA-2 0,000 USER1-MG-3 0,171

UA-4 0,000 USER2-EP-4 0,305

UA-6 0,001 Multi-Tenancy Same 3 Users

UA-8 0,005 User-Application-Threads Sig.

Multi-Tenancy Same 2 Users USER1-CG-1 0,799

User-Application-Threads Sig. USER1-IS-2 0,575

USER1-BT-4 0,007 USER1-SP-2 0,646

USER1-UA-4 0,005 USER2-CG-1 0,203

USER2-SP-4 0,022 USER2-CG-2 0,799

USER2-UA-1 0,005 USER2-LU-1 0,878

USER2-UA-2 0,005 USER2-MG-1 0,539

USER2-UA-3 0,017 USER2-MG-2 0,059

USER1-BT-1 0,017 USER2-SP-1 0,959

Continued on next page

264

Table 3.4 – Continued from previous page

USER1-LU-4 0,000 USER2-SP-2 0,059

USER1-SP-1 0,023 USER2-UA-2 0,445

USER1-UA-2 0,000 USER1-FT-2 0,717

USER2-BT-4 0,041 USER1-MG-2 0,148

USER2-CG-2 0,016 USER2-UA-1 0,131

USER2-IS-2 0,002 USER3-MG-2 0,832

USER2-LU-4 0,001 USER3-SP-2 0,111

USER2-SP-2 0,004 USER3-UA-2 0,406

Multi-Tenancy Same 3 Users Multi-Tenancy Same 4 Users

User-Application-Threads Sig. User-Application-Threads Sig.

USER1-IS-1 0,005 USER1-CG-1 0,059

USER1-IS-2 0,020 USER1-CG-2 0,074

USER1-LU-1 0,005 USER1-LU-1 0,799

USER2-IS-1 0,033 USER1-SP-2 0,074

USER2-SP-2 0,009 USER1-UA-2 0,139

USER3-EP-1 0,005 USER2-CG-1 0,878

USER3-MG-2 0,007 USER2-CG-2 0,241

USER3-SP-2 0,013 USER2-IS-2 0,683

USER1-FT-1 0,007 USER2-LU-2 0,241

USER1-LU-2 0,001 USER2-MG-2 0,059

USER1-MG-1 0,004 USER2-SP-1 0,508

USER1-SP-1 0,034 USER3-IS-1 0,092

USER1-UA-1 0,012 USER3-IS-2 0,284

USER1-UA-2 0,014 USER4-IS-2 0,646

USER2-CG-2 0,026 USER4-LU-1 0,508

USER2-EP-1 0,047 USER4-MG-2 0,575

USER2-LU-1 0,013 USER4-SP-1 0,139

Continued on next page

265

Table 3.4 – Continued from previous page

USER2-LU-2 0,001 USER4-SP-2 0,959

USER2-MG-1 0,037 USER1-LU-2 0,056

USER2-MG-2 0,028 USER1-MG-1 0,464

USER3-BT-2 0,000 USER1-SP-1 0,532

USER3-CG-1 0,011 USER2-LU-1 0,945

USER3-CG-2 0,001 USER2-MG-1 0,512

USER3-FT-2 0,019 USER2-SP-2 0,070

USER3-LU-2 0,013 USER2-UA2 0,759

USER3-UA-1 0,000 USER3-FT-1 0,062

Multi-Tenancy Same 4 Users USER3-LU-1 0,141

User-Application-Threads Sig. USER3-MG-1 0,120

USER2-UA-1 0,016 USER3-MG-2 0,209

USER3-FT-2 0,013 USER3-SP-1 0,119

USER3-LU-2 0,013 USER3-SP-2 0,358

USER3-UA-1 0,007 USER4-BT-2 0,204

USER3-UA-2 0,005 USER4-FT-1 0,062

USER4-IS-2 0,014 USER4-IS-1 0,526

USER1-CG-1 0,001 USER4-MG-1 0,226

USER1-FT-2 0,035 Multi-Tenancy Diff 2 Users

USER1-LU-2 0,029 User-Application-Threads Sig.

USER1-UA-1 0,001 USER1-IS-3 0,683

USER2-CG-1 0,003 USER1-IS-4 0,721

USER2-FT-2 0,030 USER2-CG-3 0,093

USER3-CG-1 0,000 USER2-CG-4 0,203

USER3-FT-1 0,001 USER2-SP-4 0,074

USER3-LU-1 0,019 USER1-MG-3 0,471

USER4-CG-1 0,001 USER1-MG-4 0,254

Continued on next page

266

Table 3.4 – Continued from previous page

USER4-MG-1 0,041 USER2-SP-2 0,141

USER4-UA-1 0,000 Multi-Tenancy Diff 3 Users

Multi-Tenancy Diff 2 Users User-Application-Threads Sig.

User-Application-Threads Sig. USER1-EP-2 0,074

USER2-UA-2 0,005 USER1-IS-2 0,333

USER2-UA-3 0,005 USER2-CG-1 0,838

USER2-UA-4 0,022 USER2-CG-2 0,959

USER2-UA-1 0,000 USER2-SP-1 0,093

Multi-Tenancy Diff 3 Users USER2-LU-1 0,203

User-Application-Threads Sig. USER2-SP-2 0,365

USER1-EP-1 0,037 Multi-Tenancy Diff 4 Users

USER3-MG-1 0,005 User-Application-Threads Sig.

USER3-MG-2 0,005 USER2-MG-2 0,203

USER3-UA-2 0,005 USER3-CG-1 0,074

USER1-BT-1 0,002 USER3-CG-2 0,959

USER1-BT-2 0,012 USER4-FT-1 0,214

USER3-FT-2 0,000 USER4-FT-2 0,415

USER3-UA-1 0,000 USER4-FT-1 0,155

Multi-Tenancy Diff 4 Users USER4-LU-1 0,071

User-Application-Threads Sig.

USER1-UA-2 0,010

Table 3.4: Statistical results in the SPSS analysis of the NPB-OMP suite (LXC X Native
and KVM X Native).

267

3.5.3 Third Hypothesis

The performance characteristics of the enterprise workloads on the deployed

cloud scenarios are statistically different with respect to the native computing

environment.

Therefore to test this hypothesis, it was formalized by dividing them by: Com-

pare the LXC-based cloud workloads (Parsec suite) against the native environment and

compare KVM-based cloud workloads (Parsec suite) against the native environment.

In addition, the variables used in the statistical hypotheses are: EtK for execution time

in KVM cloud-based EtL for execution time in LXC cloud-based and EtN for execution

time in native environment.

The results of the PARSEC suite (LXC X Native) were treated by SPSS as

follows:

• H0: EtL == EtN

• H1: EtL != EtN

Through the statistical analysis, it is possible to reject the null hypothesis (H0)

because most of the results indicate significant differences between the LXC Cloud-

Based and Native environment and, therefore assume the alternative hypothesis (H1).

The results of the PARSEC suite (KVM X Native) were treated by SPSS as

follows:

• H0: EtK == EtN

• H1: EtK != EtN

268

In turn, after the statistical analysis, it is possible to reject the null hypothesis

(H0) because most of the results indicate significant differences between the KVM

Cloud-Based and Native environment and, therefore assume the alternative hypothesis

(H1).

The Table 3.5 is divided between the results of the PARSEC (LXC x Native)

and PARSEC (KVM x Native) suite, with the green column being the partition. The

results are arranged according to the scenario (with gray background), in this way in

the first column of each test (LXC x Native and KVM x Native) of the PARSEC suite

are represented the applications, number of threads and in the multi-tenancy scenarios

the corresponding user. In the second column of each test (LXC x Native and KVM x

Native) is represented the Sig. variable respecting the rule of addition of the results with

less occurrence. In both cases (LXC x Native and KVM x Native) the lowest number

of occurrences was Sig. > 0.05, or statistically non-different. It can be concluded that

the PARSEC suite execution times present significant differences in the comparison of

LXC cloud-based against native environment and significant differences in execution

times among KVM cloud-based and native environment.

PARSEC SUITE (LXC X NATIVE) PARSEC SUITE (KVM X NATIVE)

High Performance High Performance

Application-Threads Sig. Application-Threads Sig.

RAYTRACE-1 0,241 STREAMCLUSTER-2 0,799

X264-1 0,241 STREAMCLUSTER-5 0,303

STREAMCLUSTER-3 0,575 X264-1 0,322

CANNEAL-2 0,721 STREAMCLUSTER-6 0,323

FERRET-7 0,051 CANNEAL-7 0,407

RAYTRACE-2 0,085 CANNEAL-8 0,714

STREAMCLUSTER-1 0,242 Multi-Tenancy Same 2 Users

RAYTRACE-6 0,261 User-Application-Threads Sig.

Continued on next page

269

Table 3.5 – Continued from previous page

FACESIM-4 0,285 USER1-FREQMINE-2 0,074

RAYTRACE-5 0,349 USER1-STREAMCLUSTER-3 0,074

RAYTRACE-4 0,354 USER2-FREQMINE-2 0,074

FACESIM-3 0,428 USER2-STREAMCLUSTER-1 0,139

FREQMINE-4 0,431 USER2-CANNEAL-4 0,203

CANNEAL-8 0,459 USER2-STREAMCLUSTER-4 0,333

RAYTRACE-8 0,515 USER1-STREAMCLUSTER-1 0,445

RAYTRACE-3 0,779 USER1-STREAMCLUSTER-4 0,445

RAYTRACE-7 0,918 USER1-FREQMINE-3 0,508

Multi-Tenancy Same 2 Users USER2-FREQMINE-3 0,508

User-Application-Threads Sig. USER2-FREQMINE-4 0,646

USER2-STREAMCLUSTER-1 0,074 USER2-BODYTRACK-4 0,721

USER2-SWAPTIONS-3 0,093 USER1-X264-1 0,799

USER1-STREAMCLUSTER-1 0,114 USER2-BLACKSCHOLES-2 0,054

USER2-STREAMCLUSTER-2 0,139 USER1-X264-4 0,119

USER2-CANNEAL-4 0,333 USER2-STREAMCLUSTER-3 0,182

USER1-STREAMCLUSTER-3 0,445 USER1-CANNEAL-1 0,197

USER2-STREAMCLUSTER-3 0,721 USER2-CANNEAL-2 0,265

USER1-STREAMCLUSTER-4 0,799 USER2-CANNEAL-1 0,421

USER1-X264-1 0,799 USER2-FACESIM-4 0,704

USER1-CANNEAL-2 0,878 USER1-STREAMCLUSTER-2 0,906

USER2-STREAMCLUSTER-4 0,878 Multi-Tenancy Same 3 Users

USER2-FACESIM-1 0,055 User-Application-Threads Sig.

USER1-SWAPTIONS-2 0,064 USER1-FREQMINE-1 0,074

USER1-X264-4 0,083 USER1-FREQMINE-2 0,074

USER2-X264-3 0,084 USER2-DEDUP-2 0,139

USER1-RAYTRACE-1 0,091 USER2-STREAMCLUSTER-2 0,241

Continued on next page

270

Table 3.5 – Continued from previous page

USER2-RAYTRACE-2 0,098 USER2-X264-1 0,285

USER1-X264-3 0,108 USER1-BLACKSCHOLES-2 0,172

USER2-FACESIM-4 0,126 USER2-CANNEAL-2 0,195

USER1-RAYTRACE-4 0,126 USER2-BLACKSCHOLES-1 0,426

USER1-CANNEAL-1 0,138 USER1-STREAMCLUSTER-2 0,444

USER1-RAYTRACE-3 0,150 USER2-CANNEAL-1 0,826

USER2-CANNEAL-1 0,195 Multi-Tenancy Same 4 Users

USER1-CANNEAL-4 0,292 User-Application-Threads Sig.

USER2-FERRET-4 0,298 USER4-FACESIM-2 0,059

USER1-CANNEAL-3 0,302 USER2-FREQMINE-1 0,074

USER1-STREAMCLUSTER-2 0,658 USER3-FACESIM-2 0,074

USER1-RAYTRACE-2 0,682 USER3-CANNEAL-1 0,093

USER2-CANNEAL-3 0,705 USER4-STREAMCLUSTER-1 0,241

USER2-RAYTRACE-1 0,990 USER4-STREAMCLUSTER-2 0,285

USER1-X264-2 0,995 USER2-X264-1 0,445

Multi-Tenancy Same 3 Users USER2-RAYTRACE-1 0,061

User-Application-Threads Sig. USER3-STREAMCLUSTER-1 0,078

USER2-CANNEAL-1 0,059 USER3-BLACKSCHOLES-1 0,078

USER1-SWAPTIONS-2 0,093 USER1-STREAMCLUSTER-1 0,083

USER2-STREAMCLUSTER-2 0,114 USER2-STREAMCLUSTER-1 0,125

USER1-STREAMCLUSTER-1 0,139 USER4-CANNEAL-1 0,128

USER3-FREQMINE-1 0,169 USER1-STREAMCLUSTER-2 0,331

USER3-STREAMCLUSTER-1 0,169 USER3-STREAMCLUSTER-2 0,363

USER1-X264-1 0,203 USER2-STREAMCLUSTER-2 0,897

USER3-FERRET-2 0,203 Multi-Tenancy Diff 2 Users

USER1-RAYTRACE-2 0,333 User-Application-Threads Sig.

USER2-BLACKSCHOLES-1 0,333 USER2-CANNEAL-4 0,074

Continued on next page

271

Table 3.5 – Continued from previous page

USER3-X264-2 0,878 USER2-DEDUP-2 0,093

USER3-CANNEAL-1 0,959 Multi-Tenancy Diff 3 Users

USER3-STREAMCLUSTER-2 0,070 User-Application-Threads Sig.

USER1-BLACKSCHOLES-2 0,123 USER1-CANNEAL-1 0,258

USER1-CANNEAL-2 0,144 USER1-CANNEAL-2 0,447

USER1-FREQMINE-2 0,158 Multi-Tenancy Diff 4 Users

USER3-CANNEAL-2 0,255 User-Application-Threads Sig.

USER2-X264-1 0,298 USER4-X264-1 0,386

USER1-X264-2 0,367

USER2-RAYTRACE-2 0,431

USER1-RAYTRACE-1 0,458

USER1-FREQMINE-1 0,552

USER1-STREAMCLUSTER-2 0,672

USER2-RAYTRACE-1 0,772

USER2-CANNEAL-2 1,000

Multi-Tenancy Same 4 Users

User-Application-Threads Sig.

USER2-FREQMINE-1 0,093

USER1-X264-1 0,169

USER2-RAYTRACE-2 0,203

USER3-FACESIM-2 0,203

USER3-FREQMINE-1 0,241

USER4-STREAMCLUSTER-2 0,241

USER2-FREQMINE-2 0,386

USER3-STREAMCLUSTER-2 0,508

USER3-RAYTRACE-2 0,575

Multi-Tenancy Diff 2 Users

Continued on next page

272

Table 3.5 – Continued from previous page

User-Application-Threads Sig.

USER2-X264-1 0,646

USER4-X264-1 0,721

USER1-RAYTRACE-2 0,799

USER3-CANNEAL-1 0,799

Multi-Tenancy Diff 3 Users

User-Application-Threads Sig.

USER1-FREQMINE-1 0,064

USER2-STREAMCLUSTER-2 0,106

USER1-FREQMINE-2 0,112

USER1-CANNEAL-1 0,117

USER1-FACESIM-1 0,125

USER2-STREAMCLUSTER-1 0,197

USER1-FACESIM-2 0,255

USER1-FERRET-2 0,366

Multi-Tenancy Diff 4 Users

User-Application-Threads Sig.

USER2-X264-2 0,480

USER2-RAYTRACE-1 0,560

USER2-CANNEAL-2 0,566

USER1-CANNEAL-2 0,588

USER1-X264-2 0,611

USER1-STREAMCLUSTER-2 0,798

USER2-CANNEAL-1 0,819

USER1-RAYTRACE-1 0,841

USER1-BLACKSCHOLES-1 0,680

Multi-Tenancy Different 2 Users

Continued on next page

273

Table 3.5 – Continued from previous page

User-Application-Threads Sig.

USER2-CANNEAL-4 0,074

USER2-FACESIM-4 0,169

USER1-RAYTRACE-3 0,285

USER1-FERRET-4 0,508

USER1-RAYTRACE-4 0,508

USER1-X264-1 0,508

USER1-RAYTRACE-2 0,053

USER2-STREAMCLUSTER-2 0,098

USER1-FREQMINE-4 0,195

USER1-RAYTRACE-1 0,203

Multi-Tenancy Different 3 Users

User-Application-Threads Sig.

USER1-CANNEAL-2 0,169

USER1-CANNEAL-1 0,203

USER2-X264-1 0,203

Multi-Tenancy Different 4 Users

User-Application-Threads Sig.

USER4-STREAMCLUSTER-1 0,139

USER4-RAYTRACE-1 0,333

USER4-STREAMCLUSTER-2 0,445

USER4-RAYTRACE-2 0,508

USER1-CANNEAL-2 0,215

Table 3.5: Statistical results in the SPSS analysis of the PARSEC suite (LXC X Native
and KVM X Native).

CONCLUSION

Private IaaS clouds bring the potential of this technology to the organization-

managed infrastructure, stablishing a pool of virtualized resources, that combines rapid

elasticity, on-demand service and provision of resources. However, porting latency-

sensitive applications to the virtualized cloud environment can result in unexpected

performance issues.

In this thesis, a performance characterization was conducted using the Cloud-

Stack IaaS tool to run applications from scientific and enterprise fields using different

virtualization technologies. To better represent the cloud environment and also simu-

late the concurrency between the multi-tenancy environment, a set of combination of

experiments and methodologies were applied to each proposed scenario. Thus, the

experiments were performed combining a total of four users, using the same and dif-

ferent applications. Then, a discussion was made comparing the results with the native

environment, which served as the comparative baseline. In addition, a statistical pro-

cess was applied to the data collected to verify if they are significantly different in the

presented scenario. Finally, two papers are created and accepted in the ERAD event.

One of them evaluates the performance of the management operations (create and

delete instances) with the OpenStack and CloudStack cloud management tools Mal-

iszewski et al. (2017) and the other makes a performance characterization of pipeline

275

applications in KVM and LXC instances with CloudStack Baum et al. (2017).

The complexity of the proposed experiments added with the combination of

features presented by the cloud management tool, makes it possible to effectively eval-

uate the proposed workloads using different virtualizations technologies. The result

was a large number of experiments, which gives the opportunity to make a deep re-

search designed to characterize the two different applications domains (scientific and

enterprise) in the cloud environment. Furthermore, container-based technology and

the full virtualization analyses can be used for further studies to characterized the ap-

plications running in this type of environment, because in general, these virtualization

technologies are extensively used, whether in the cloud or not. However, the charac-

terization also extends to the native environment, especially as it is frequently used for

many researches as a baseline to comparative methods.

This knowledge achieved from the presented work goes further and the char-

acterizations of the multi-tenancy environment demonstrate to be more challenging

than expected, demanding a lot of research and even inducing the utilization of a trace

application used for monitoring purposes. However, it gives an important overview of

how applications behave effectively in this environment, which is known to compete

intensely for machine resources.

The proposed HPC scenarios demonstrated, in most cases, an expected re-

sult of the native and KVM environment. Expectations were high with regard to LXC

container, because it is well-debated in the academia, demonstrating low overhead

and have a near-native performance. However, the experiments reveal the opposite in

some workloads, with LXC in some cases exhibiting an impressive poor performance

when compared to KVM virtualization. It was quite intriguing, and a different approach

was required to respond to this unexpected behavior. Therefore, a new test set was

prepared to investigate as discussed in subsection 3.3.3, and the result was assigned

to NFS used by CloudStack, which induces some performance degradations, espe-

276

cially in the case of intense disk I/O applications. This reveals that the cloud deploy-

ment used is not favorable for this workloads.

In the case of same application scenario, it was possible to identify the fierce

dispute for computing resources among the instances, exhibiting an unpredictable re-

sult in many applications. This became evident as more users were added, presenting

major distortions in the native and LXC environment, especially for applications that

make an intense use of the LLC cache, such as Freqmine. In this scenario, KVM-

based cloud has proved to be more predictable and performs better with significant

resource isolation, revealing the benefits of the full virtualization technologies.

On the other hand, the experiments conducted simulating multi-tenancy using

different applications, presented more predictable and stable results in comparison

to the same applications, essentially for native and LXC environments, where KVM

showed some overhead. However, it is important to mention that, especially in the

case of native and LXC, much of the performance interference suffered by the instance

is due to the execution of the workload in the neighbor instance, that relies only on the

mechanisms of the operating system, which implements a basic resource isolation.

The container-based virtualization is not a new technology it is indeed promis-

ing and has become a hot topic because it is known to demonstrate, by referenced

studies, to have a near-native performance with good levels of resource isolation, which

is a demanding requirement for cloud computing. In this study, LXC presented low

overhead in case of CPU and memory workload. However, an issue that is not usually

discussed by other studies, is the implementation of this technology, which in the case

of CloudStack, the NFS is responsible for providing VM access to the disk, inevitably

using the network for such operations. Therefore, this study indirectly discovered that it

may be a wrong choice for applications that requires intense disk usage, as presented

by Dedup and Vips in subsection 3.3.3. In addition, an important fact discussed was

the inefficient resource isolation presented in the same scenario with the same appli-

277

cations, where the rampant competition for resources causes unpredictable results in

certain workloads.

In general, KVM exhibits a more stable and predictable performance. This is

possible due to the driver’s maturity of this technology, which among other benefits, im-

plements buffer mechanisms that provide relatively good disk performance. In addition,

the high levels of isolation provided, such as presented in the case of same applications

scenario, are clearly noticed, where uncontrolled competition for computing resources

in the native and LXC induced significant variations among the workloads. However,

the overhead introduced by the virtualization layer is more noticeable in applications

that are more CPU demanding.

In the case of Parsec benchmark suit, although the diverse number of work-

loads, in general, a similar pattern allowed to estimate the behavior of some applica-

tions in the virtualized cloud environment after a few experiments performed. A correla-

tion was made to the processor cache miss with the size of the application working set.

Thus, the larger the working set, the greater was the cache miss and more sensitive

to the memory latency. Therefore, applications that have more performance variation,

especially in the case of native and LXC multi-tenancy, were most dependent on LLC

cache, memory latency and disk I/O operations. In addition, the serial portions of the

stages presented in some programs negatively affect overall performance and scala-

bility, especially in the case of pipeline parallelism, which has serial input and output

stages.

In relation to the scientific workloads represented by the NPB-OMP suite, it

can be seen and verified that most of them have applications that are CPU-bound

and memory-bound extensively exploiting the parallelism and available resources. An-

other proof already expected was the use of disk (I/O) in which low and sporadic use

is verified. The characterization of scientific applications showed a relation between

memory, CPU, and Cache Miss, in which it is possible to observe that applications with

278

large work sets have problems with miss cache and scheduling related to processor

utilization. In addition it is noticeable the degradation of performance that happens

during context switching, in which even in milliseconds shown both in memory and in

the processor, representing a loss of performance.

Cloudstack IaaS tool has proven to be challenging, especially due to the com-

plexity of this environment that demonstrates to have some peculiarities. On the other

hand, it proves to be an inspiring research test-bed, and once explored, it offers an

extensible number of features. However, attention is necessary to use some technolo-

gies, especially as demonstrated in the case of LXC deployment. Essentially because

the VM instantiated in Cloudstack uses NFS to access the disk in primary storage,

while resources such as CPU and memory are provided by the compute node chosen

to run the instances. The results are poor LXC performance, which does not imple-

ment the mechanisms necessary to manage disk access under these circumstances.

Consequently, further investigation is required to confirm whether this issue is in fact

a Cloudstack limitation, because even setting the specific compute node to host the

LXC instance, the container data is manipulated on the front end node. This results in

increasing latency, especially in the case of smaller data.

The cloud IaaS is capable of supporting a wide range of technologies and

much wider applications domains. The key question is to predict whether the state

of the art cloud environment has the resources available to provide the reasonable

performance needed to become a compelling place to meet demanding applications.

Moreover, it hosts a diverse number of applications in a concurrent multi-tenancy en-

vironment. In this research, we conclude that the cloud deployment presented is not

recommended for intensive disk I/O applications running on LXC containers, because

disk access is done through NFS, which deteriorates the disk performance. While it is

important to mention that it is not an LXC issue, but a possible Cloudstack deployment

limitation, however further investigation is necessary regarding this issue. In addition,

LXC has some limitations in respect to the resource isolation, and its utilization in the

279

production environment, especially in the case of the same applications that are cache

demanding, reveals to be counter-productive. However, despite this fact, the LXC is a

promising virtualization technology that is still evolving and expects its maturity to bring

enhancements. KVM proves to be most effective in this case, and it is more recom-

mended if the need is to achieve efficient division of computational resources but at the

cost of some overhead.

While different virtualization technologies introduce new features, all applica-

tions demand the same thing, hardware resources. Therefore, it is important to cor-

relate workloads types, virtualization technologies and hardware, after all, all layers of

features depend on hardware. In our research, as well as the related works, it becomes

clear the effect that the applications presented in conditions with low cache availability

and memory latency, and as more instances are added, there is more concurrency for

existent resources. Thus, it is critical to provide the hardware infrastructure required to

host such applications.

Finally, to have an efficient cloud environment, it is recommended to deploy

different applications with different hardware necessities. Then choose between dif-

ferent virtualization technologies, where the container promisses to have near-native

performance, except in the case of the Cloudstack deployment, or on the other hand,

choose the KVM, which has some overhead, but a better resource isolation.

3.5.4 Hypothesis Validation

The first hypothesis says that the performance characteristics of the scientific

and enterprise workloads are statistically different among deployed cloud scenarios.

This hypothesis is not entirely true because, although the vast majority of the results

present significant differences in the comparison of the LXC and KVM-based clouds in

relation to the scientific and enterprise workloads, it can be seen in the Table 3.3 that

there are results with non-significant differences.

280

The second hypothesis proposes that the performance characteristics of the

scientific workloads in the deployed cloud scenarios are statistically different with re-

spect to the native computing environment. This hypothesis is not entirely true. The

comparison of the LXC-based cloud against the native environment shows that the re-

sults are not significant, that is, the majority of the results indicate that the LXC-based

cloud and the native environment have very close results in the performance of scien-

tific workloads, however as can be seen in the left side of the Table 3.4, there are results

with significant difference. On the other hand, the comparison of the KVM-based cloud

against the native environment shows that the results are significantly different, how-

ever in the same way it can be seen in the right side of the Table 3.4, that there are

also non-significant results, then this hypothesis becomes partially true.

Finally, the third hypothesis affirms that the performance characteristics of en-

terprise workloads in the deployed cloud scenarios are statistically different with re-

spect to the native computing environment. This hypothesis is not entirely true. In both

comparisons, the results of LXC or KVM compared to the native environment show sig-

nificant differences in the execution of enterprise workloads. However, as can be seen

in the Table 3.5, there are also results that show non-significant differences, so that

there are not 100% of the results with significant differences, this hypothesis becomes

partially true.

3.6 FUTURE WORKS

As future works, we intend to proceed in this area by investigating the applica-

tions behavior using other forms of workloads implementations, such as the Message

Passing Interface (MPI), which is a standard for distributed memory used to achieve

another form of parallelism. In this way, we can analyze the impact of applications

using different computational power and expanding the analysis on the applications

running in the cloud.

281

CloudStack has had quite disappointing results when deploying LXC with some

workloads, it also requires a further investigation to verify if there is a different deploy-

ment method to avoid the NFS limitations in relation to disk I/O operations. In addition,

the workloads that shows the behavior studied should be submitted into other cloud

management tools to analyze how the underlying technologies affect it. Through this,

we can compare different cloud management tools for a specific workload.

Furthermore, in this thesis, the experiments are performed over the Cloud-

Stack IaaS cloud platform and therefore, a future work is to make the same evaluation

and use the same methodologies with other IaaS Cloud Tool platforms, such as Open-

Stack or OpenNebula.

Containers-based virtualization is a promising technology that proves to be

competitive to frequently used full virtualization. It gives the opportunity to search for

other operating system-level virtualization such as OpenVZ and software container

like Docker. Thus, it should also be characterized in the cloud environment applying

the same methodology used in present work. This will help the costumers and cloud

providers to choose what best fits to a certain cloud-scenario and it also brings more

knowledge to the research community.

Multi-tenancy is a complex environment that applies competition among users

for computing resources. This presents many variations in the execution times of the

workloads. In this thesis, it was not possible to deepen this subject to the point of

obtaining all the answers about the functioning of this environment. Therefore, a new

work specifically focused on multi-tenancy becomes necessary.

In this thesis it was not possible to deepen this theme so that all the answers

to the functioning of the environment can be obtained. Therefore, a new work focused

specifically on multi-tenancy becomes necessary.

282

Finally, the practice of overcommitment, which refers to the allocation of more

than one vCPU per physical core Ghosh and Naik (2012), is not yet explored in the

literature. According to McDougall and Anderson (2010), the number of vCPUs per

physical core is referred to the consolidation ration and the exact number is a trade

secret for cloud providers. In addition, as emphasized by Nikounia et al. (2015), taking

into account these two facts, the results presents up to 16x slowdown due to the noise

of the neighbors, which is a high bottleneck compared to the performance of a single

vCPU VMs without overcommitment. Therefore, overcommitment must be compared

and characterized to determine the performance of the applications and discover the

bottlenecks.

REFERENCES

ADRIANO VOGEL CARLOS A. F. MARON, V. L. L. B. F. S. C. S. D. G. HiPerfCloud:

um projeto de alto desempenho em nuvem. In: JORNADA DE PESQUISA SETREM,

14., Três de Maio, Brazil. Anais. . . SETREM, 2015. p.4.

AL-MUKHTAR, M. M.; MARDAN, A. A. A. Performance Evaluation of Private Clouds

Eucalyptus versus CloudStack. International Journal of Advanced Computer Sci-

ence and Applications, [S.l.], p.1–10, 2014.

AMDAHL, G. M. Validity of the single processor approach to achieving large scale

computing capabilities. In: APRIL 18-20, 1967, SPRING JOINT COMPUTER CON-

FERENCE. Proceedings. . . [S.l.: s.n.], 1967. p.483–485.

ANTONIOU, A. Performance Evaluation of Cloud Infrastructure using Complex Work-

loads. In: OF THE . Anais. . . [S.l.: s.n.], 2012. p.1–79.

BADGER, L. et al. Cloud Computing Synopsis using and Recommendations. [S.l.]:

Computer Security Division, Information Technology Laboratory, National Institute of

Standards and Technology, 2012. 81p. v.1.

BAER, J.-L. Multiprocessor Architecture. [S.l.]: Cambridge University Press, 2010.

BAILEY, D. H. The NAS Parallel Benchmarks. , [S.l.], November 2009.

BAILEY, D. H. et al. The NAS parallel benchmarks. The International Journal of Su-

percomputing Applications, [S.l.], v.5, n.3, p.63–73, 1991.

284

BARKER et al. Empirical evaluation of latency-sensitive application performance in

the cloud. In: ACM SIGMM CONFERENCE ON MULTIMEDIA SYSTEMS. Proceed-

ings. . . [S.l.: s.n.], 2010. p.35–46.

BARKER, S. K.; SHENOY, P. Empirical Evaluation of Latency-sensitive Application

Performance in the Cloud. Departament of Comuter Science, University of Mas-

sachusetts Amhrest, [S.l.], p.12, 2010.

BARNEY, B. What is parallel computing. Introduction to Parallel Computing, [S.l.],

2012.

BARROW-WILLIAMS et al. A communication characterisation of Splash-2 and Parsec.

In: WORKLOAD CHARACTERIZATION, 2009. IISWC 2009. IEEE INTERNATIONAL

SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2009. p.86–97.

BAUM, W. et al. Caracterização do Desempenho de Aplicações Pipeline em Instân-

cias KVM e LXC de uma Nuvem CloudStack. In: ESCOLA REGIONAL DE ALTO

DESEMPENHO DO ESTADO DO RIO GRANDE DO SUL (ERAD/RS), 17., Ijuí, RS,

Brazil. Anais. . . Sociedade Brasileira de Computação, 2017.

BESERRA, D.; ENDO, P. T.; BARRETO, J. Performance Evaluation of a Lightweight

Virtualization Solution for HPC I/O Scenarios. International Conference on Sys-

tems, Man, and Cybernetics, [S.l.], p.1–8, 2016.

BESERRA, D. et al. Performance Analysis of LXC for HPC Environments. 9th Inter-

national Conference on Complex, Intelligent, and Software Intensive Systems,

[S.l.], p.6, 2015.

BESERRA, D. et al. Performance analysis of LXC for HPC environments. In: COM-

PLEX, INTELLIGENT, AND SOFTWARE INTENSIVE SYSTEMS (CISIS), 2015

NINTH INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2015. p.358–

363.

BHADAURIA, M.; WEAVER, V. M.; MCKEE, S. A. Understanding PARSEC perfor-

mance on contemporary CMPs. In: WORKLOAD CHARACTERIZATION, 2009.

285

IISWC 2009. IEEE INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2009.

p.98–107.

BIENIA, C. Benchmarking Modern Multiprocessors. [S.l.]: Princeton University,

2011.

BIENIA, C. et al. The PARSEC benchmark suite: characterization and architectural im-

plications. In: PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES,

17. Proceedings. . . [S.l.: s.n.], 2008. p.72–81.

BIENIA, C.; LI, K. Parsec 2.0: a new benchmark suite for chip-multiprocessors. In:

ANNUAL WORKSHOP ON MODELING, BENCHMARKING AND SIMULATION, 5.

Proceedings. . . [S.l.: s.n.], 2009. v.2011.

BLOKLAND, K.; MENGERINK, J.; POL, M. Testing Cloud Services: how to test saas,

paas and iaas. [S.l.]: Rocky Nook, 2013.

BUTENHOF, D. R. Programming with POSIX threads. [S.l.]: Addison-Wesley Profes-

sional, 1997.

BUYYA, R.; BROBERG, J.; GOSCINSKI, A. Cloud Computing: principles and

paradigms. [S.l.]: Wiley, 2010. (Wiley Series on Parallel and Distributed Computing).

BUYYA, R. et al. Cloud computing and emerging IT platforms: vision, hype, and reality

for delivering computing as the 5th utility. Future Generation computer systems,

[S.l.], v.25, n.6, p.599–616, 2009.

BUYYA, R.; VECCHIOLA, C.; SELVI, S. T. Mastering Cloud Computing: foundations

and applications programming. 1st.ed. San Francisco, CA, USA: Morgan Kaufmann

Publishers Inc., 2013.

CAFARO, M.; ALOISIO, G. Grids, Clouds and Virtualization. [S.l.]: Springer London,

2010. (Computer Communications and Networks).

CAMPOS, E. et al. Performance Evaluation of Virtual Machines Instantiation in a Pri-

vate Cloud. 2015 IEEE World Congress on Services, [S.l.], p.1–8, 2015.

286

CARROLL, M.; KOTZé, P.; MERWE, A. van der. Securign Virtual and Cloud Environ-

ments. Service Science: Reaserch and Innovations in the Service Economy,

[S.l.], 2012.

CARVER, R. H.; TAI, K.-C. Modern Multithreading : implementing, testing, and

debugging multithreaded java and c++/pthreads/win32 programs. [S.l.]: Wiley-

Interscience, 2005.

CHAKTHRANONT, N. et al. Exploring the performance impact of virtualization on an

HPC cloud. In: CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUD-

COM), 2014 IEEE 6TH INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.],

2014. p.426–432.

CHANDRASEKARAN, K. Essentials of Cloud Computing. [S.l.]: Taylor & Francis,

2014.

CHANG, V. Delivery and Adoption of Cloud Computing Services in Contempo-

rary Organizations. [S.l.]: IGI Global, 2015. (Advances in Systems Analysis, Soft-

ware Engineering, and High Performance Computing).

CHANG, V.; WALTERS, R. J.; WILLS, G. The development that leads to the Cloud

Computing Business Framework. International Journal of Information Manage-

ment, http://www.sciencedirect.com/science/article/pii/S026840121300008X, v.33,

n.3, p.524 – 538, 2013.

CHAPMAN, B.; JOST, G.; PAS, R. van der. Using OpenMP: portable shared mem-

ory parallel programming. [S.l.]: MIT Press, 2008. n.v. 10. (Scientific Computation

Series).

CHASAPIS, D. et al. PARSECSs: evaluating the impact of task parallelism in the par-

sec benchmark suite. ACM Transactions on Architecture and Code Optimization

(TACO), [S.l.], v.12, n.4, p.41, 2016.

CHENG, Y.; CHEN, W. Evaluation of Virtual Machine Performance on NUMA Multicore

Systems. In: Anais. . . [S.l.: s.n.], 2013. p.1–8.

287

CHENG, Y.; CHEN, W. Evaluation of virtual machine performance on NUMA multicore

systems. In: P2P, PARALLEL, GRID, CLOUD AND INTERNET COMPUTING (3PG-

CIC), 2013 EIGHTH INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.],

2013. p.136–143.

CHEVERESAN, R. et al. Characteristics of Workloads Used in High Performance and

Technical Computing. In: ANNUAL INTERNATIONAL CONFERENCE ON SUPER-

COMPUTING, 21., New York, NY, USA. Proceedings. . . ACM, 2007. p.73–82. (ICS

07).

CISCO. Data Center Architecture Overview <http://www.cisco.com/c/en/us/td/docs/

solutions/enterprise/data_center/dc_infra2_5/dcinfra_1.html#wp1066094>. Last ac-

cess mar, 2017.

CLOUDSTACK. Official Page<https://cloudstack.apache.org/>. Last access jan,

2017.

CLOUDSTACK. Concepts and Terminology< http://docs.cloudstack.apache.org/en

latest/concepts.html#about-clu>. Last access jan, 2017.

CLOUDSTACK. Host LXC Installationy< http://docs.cloudstack.apache.org/projects/

cloudstack-installation/en/4.9/hypervisor/lxc.html>. Last access jan, 2017.

COUTINHO, E. F.; PAILLARD, G.; SOUZA, J. N. de. Performance Analysis on Sci-

entific Computing and Cloud Computing Environments. Proceedings of the 7th

Euro American Conference on Telematics and Information Systems, [S.l.], p.1–

6, 2014.

CUPITT, J.; MARTINEZ, K. VIPS: an image processing system for large images. In:

ELECTRONIC IMAGING: SCIENCE & TECHNOLOGY. Anais. . . [S.l.: s.n.], 1996.

p.19–28.

DUKARIC, R.; JURIC, M. B. Towards a unified taxonomy and architecture of cloud

frameworks. Future Generation Computer Systems, [S.l.], v.29, n.5, p.1196–1210,

2013.

288

EL-REWINI, H.; ABD-EL-BARR, M. Advanced Computer Architecture and Parallel

Processing. [S.l.]: Wiley, 2005. (Wiley Series on Parallel and Distributed Comput-

ing).

EVOY, G. M.; MURY, A. R.; SCHULZE, B. An analysis of definition and placement of

virtual machines for high performance applications on Clouds. Concurrency and

Computation Pratice and Experience, [S.l.], p.1789–1814, 2014.

EXPÓSITO, R. R. et al. Evaluation of messaging middleware for high-performance

cloud computing. Personal and Ubiquitous Computing, [S.l.], v.17, n.8, p.1709–

1719, 2013.

FELTER, W. et al. An updated performance comparison of virtual machines and linux

containers. In: PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (IS-

PASS). Anais. . . [S.l.: s.n.], 2015. p.171–172.

FENG, H. et al. Unstructured Adaptive (UA) NAS parallel benchmark. [S.l.]: version

1.0. Technical report, NASA Technical Report NAS-04-006, 2004.

FERDMAN, M. et al. Clearing the clouds: a study of emerging scale-out workloads on

modern hardware. In: ACM SIGPLAN NOTICES. Anais. . . [S.l.: s.n.], 2012. v.47,

n.4, p.37–48.

FERNÁNDEZ, J. et al. SCE Toolboxes for the development of high-level parallel ap-

plications. In: INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE.

Anais. . . [S.l.: s.n.], 2006. p.518–525.

FIELD, A. Discovering Statistics Using SPSS. [S.l.]: SAGE Publications, 2009. (ISM

(London, England)).

FIELD, A. Discovering Statistics Using IBM SPSS Statistics. [S.l.]: SAGE Publica-

tions, 2013. (Discovering Statistics Using IBM SPSS Statistics: And Sex and Drugs

and Rock ’n’ Roll).

289

FISHER, R. Statistical Methods For Research Workers. [S.l.]: Cosmo Publications,

1925. (Cosmo study guides).

FOSTER, I.; KESSELMAN, C.; TUECKE, S. The anatomy of the grid: enabling scal-

able virtual organizations. International journal of high performance computing

applications, [S.l.], v.15, n.3, p.200–222, 2001.

FOUNDATION, O. The Crossroads of Cloud and HPC: openstack for scientific re-

search: exploring openstack cloud computing for scientific workloads. [S.l.]: Cre-

ateSpace Independent Publishing Platform, 2016.

FREUND, J. Estatística Aplicada Economicamente. [S.l.]: Bookman, 2009.

FRUMKIN, M. A.; SHABANO, L. Arithmetic data cube as a data intensive bench-

mark. [S.l.: s.n.], 2003.

FRUMKIN, M. Data flow pattern analysis of scientific applications. In: WORKSHOP ON

PATTERNS IN HIGH PERFORMANCE COMPUTING. Anais. . . [S.l.: s.n.], 2005.

GARCIA, G. A.; FREITAS, H. C. Avaliação de Desempenho de um Cluster Raspberry

Pi com NAS Parallel Benchmarks. , Florianópolis, Santa Catarina, p.57–62, Octo-

ber 2015.

GHOSH, R.; NAIK, V. K. Biting off safely more than you can chew: predictive analytics

for resource over-commit in iaas cloud. In: CLOUD COMPUTING (CLOUD), 2012

IEEE 5TH INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2012. p.25–

32.

GHOSHAL, D.; CANON, R. S.; RAMAKRISHNAN, L. I/O Performance of Virtualized

Cloud Environments. DataCloud-SC ’11 Proceedings of the second international

workshop on Data intensive computing in the clouds, [S.l.], p.71–80, 2011.

GHOSHAL, D.; CANON, R. S.; RAMAKRISHNAN, L. I/o performance of virtualized

cloud environments. In: DATA INTENSIVE COMPUTING IN THE CLOUDS. Pro-

ceedings. . . [S.l.: s.n.], 2011. p.71–80.

290

GOLDWORM, B.; SKAMAROCK, A. Blade Servers and Virtualization: transforming

enterprise computing while cutting costs. [S.l.]: Wiley, 2007.

GOTO, Y. Kernel-based virtual machine technology. Fujitsu Scientific and Technical

Journal, [S.l.], v.47, p.362–368, 2011.

GROPP, W. et al. Using Advanced MPI: modern features of the message-passing

interface. [S.l.]: MIT Press, 2014. (Computer science & intelligent systems).

GRÜN, T.; HILLEBRAND, M. A. NAS Integer Sort on multi-threaded shared mem-

ory machines. In: EUROPEAN CONFERENCE ON PARALLEL PROCESSING.

Anais. . . [S.l.: s.n.], 1998. p.999–1009.

GUPTA, A. et al. HPC-Aware VM Placement in Infrastructure Clouds. Cloud Engineer-

ing (IC2E), 2013 IEEE International Conference, [S.l.], 2013.

GUPTA, A. et al. Improving HPC Application Performance in Cloud through Dy-

namic Load Balancing. Cluster, Cloud and Grid Computing (CCGrid), 2013 13th

IEEE/ACM International Symposium, [S.l.], 2013.

GUPTA, A. et al. The Who, What, Why, and How of High Performance Computing in

the Cloud. Cloud Computing Technology and Science (CloudCom), 2013 IEEE

5th International Conference, [S.l.], p.1–9, 2013.

GUPTA, A. et al. The who, what, why, and how of high performance computing in the

cloud. In: CLOUD COMPUTING TECHNOLOGY AND SCIENCE (CLOUDCOM),

2013 IEEE 5TH INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013.

v.1, p.306–314.

GUPTA, A.; KALE, L. V. Towards Efficient Mapping, Scheduling, and Execution of HPC

Applications on Platforms in Cloud. Parallel and Distributed Processing Sympo-

sium Workshops PhD Forum (IPDPSW), 2013 IEEE 27th International, [S.l.],

p.1–6, 2013.

291

GUPTA, A.; MILOJICIC, D. Evaluation of hpc applications on cloud. In: OPEN CIRRUS

SUMMIT (OCS), 2011 SIXTH. Anais. . . [S.l.: s.n.], 2011. p.22–26.

GUSTAFSON, J. L.; SNELL, Q. O. HINT: a new way to measure computer per-

formance. In: SYSTEM SCIENCES, 1995. PROCEEDINGS OF THE TWENTY-

EIGHTH HAWAII INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 1995.

v.2, p.392–401.

HAN, J.; PEI, J.; YIN, Y. Mining frequent patterns without candidate generation. In:

ACM SIGMOD RECORD. Anais. . . [S.l.: s.n.], 2000. v.29, n.2, p.1–12.

HASHIMOTO, Y.; AIDA, K. Evaluation of Performance Degradation in HPC Applica-

tions with VM Consolidation. Third International Conference on Networking and

Computing, [S.l.], p.1–5, 2012.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture A Quantitative Ap-

proach. [S.l.]: Morgan Kaufmann, 2012.

HONG, C.-H. et al. Performance Prediction and Evaluation of Parallel Applications in

KVM, Xen, and VMware. European Conference on Parallel Processing, [S.l.], p.1–

12, 2014.

HONG, C.-H. et al. Performance prediction and evaluation of parallel applications in

KVM, Xen, and VMware. In: EUROPEAN CONFERENCE ON PARALLEL PRO-

CESSING. Anais. . . [S.l.: s.n.], 2014. p.99–110.

HP. Stripped-down grid : a lightweight grid for computing’s have-nots <

http://www.hpl.hp.com/news/2005/jan-mar/grid.html>. Last access jan, 2017.

HUANG, Q. et al. Evaluating open-source cloud computing solutions for geosciences.

Computers Geosciences, [S.l.], 2013.

HUANG, W. et al. A case for high performance computing with virtual machines. In:

SUPERCOMPUTING, 20. Proceedings. . . [S.l.: s.n.], 2006. p.125–134.

292

HUBER, N. et al. Evaluating and Modeling Virtualization Performance Overhead for

Cloud Environments. In: CLOSER. Anais. . . [S.l.: s.n.], 2011. p.563–573.

HURWITZ, J. et al. Cloud Computing For Dummies. [S.l.]: Wiley Publishing, Inc.,

2010.

IBM. LXC: linux container tools <http://www.ibm.com/developerworks/linux/library/l-

lxc-containers/>. Last access jan, 2017.

INTEL. Intel R© Virtualization Technology for Directed I/O (VT-d): enhancing intel

platforms for efficient virtualization of i/o devices <https://software.intel.com/en-

us/articles/intel-virtualization-technology-for-directed-io-vt-d-enhancing-intel-

platforms-for-efficient-virtualization-of-io-devices>. Last access jan, 2017.

INTEL. Multithreaded Code Optimization in PARSEC 3.0: blackscholes<

https://software.intel.com/en-us/articles/multithreaded-code-optimization-in-parsec-

30-blackscholes>. Last access jan, 2017.

IOSUP, A. et al. Performance Analysis of Cloud Computing Services for Many-Tasks

Scientific Computing. IEEE Transactions on Parallel and Distributed Systems,

[S.l.], v.22, n.6, p.931–945, June 2011.

ISO/IEC-17788. Information technology — Cloud computing — Overview and vocabu-

lary. , [S.l.], 10 2014.

JACKSON, K.; BUNCH, C.; SIGLER, E. OpenStack Cloud Computing Cookbook.

[S.l.]: Packt Publishing, 2015.

JANSSEN, C. L.; NIELSEN, I. M. B. Parallel Computing in Quantum Chemistry.

[S.l.]: CRC Press, 2008.

JAYASINGHE, D. et al. Variations in performance and scalability: an experimental study

in iaas clouds using multi-tier workloads. IEEE Transactions on Services Comput-

ing, [S.l.], v.7, n.2, p.293–306, 2014.

293

JIANG, T. et al. Micro-architectural characterization of desktop cloud workloads. In:

WORKLOAD CHARACTERIZATION (IISWC), 2012 IEEE INTERNATIONAL SYM-

POSIUM ON. Anais. . . [S.l.: s.n.], 2012. p.131–140.

JIN, H.; WIJNGAART, R. F. V. der. NAS Parallel Benchmarks, Multi-Zone Versions. ,

[S.l.], p.9, July 2003.

JUVE, G. et al. Scientific Workflow Applications on Amazon EC2. , [S.l.], p.8, 2009.

KAVIS, M. Architecting the Cloud: design decisions for cloud computing service mod-

els (saas, paas, and iaas). [S.l.]: Wiley, 2014. (Wiley CIO).

KERBYSON, D. J. et al. A performance comparison of current HPC systems: blue

gene/q, cray xe6 and infiniband systems. Future Generation Computer Systems,

[S.l.], p.1–14, 2014.

KIRKPATRICK, S. et al. Optimization by simmulated annealing. science, [S.l.], v.220,

n.4598, p.671–680, 1983.

KUDRYAVTSEV, A. et al. Virtualizing HPC applications using modern hypervisors. In:

CLOUD SERVICES, FEDERATION, AND THE 8TH OPEN CIRRUS SUMMIT, 2012.

Proceedings. . . [S.l.: s.n.], 2012. p.7–12.

LEITE, D. et al. Performance Evaluation of Virtual Machine Monitors for Cloud Com-

puting. 2012 13th Symposium on Computing Systems, [S.l.], p.1–7, 2012.

LI, C.; XIE, J.; ZHANG, X. Performance evaluation based on open source cloud plat-

forms for high performance computing. In: INTELLIGENT NETWORKS AND IN-

TELLIGENT SYSTEMS (ICINIS), 2013 6TH INTERNATIONAL CONFERENCE ON.

Anais. . . [S.l.: s.n.], 2013. p.90–94.

LI, D.; HUANG, S.; CAMERON, K. CG-Cell: an npb benchmark implementation on

cell broadband engine. In: INTERNATIONAL CONFERENCE ON DISTRIBUTED

COMPUTING AND NETWORKING. Anais. . . [S.l.: s.n.], 2008. p.263–273.

294

LIBVIRT. What is libvirt? <http://wiki.libvirt.org/page/faq#what_is_libvirt.3f>. Last ac-

cess jan, 2017.

LIBVIRT. Virtio < https://wiki.libvirt.org/page/virtio>. Last access jan, 2017.

LINUX. KSM <http://www.linux-kvm.org/page/ksm>. Last access jan, 2017.

LINUXPLANET. Virtualizing the Embedded World: vista over linux in a cell phone?

<http://www.linuxplanet.com/linuxplanet/reports/6490/1/screenshot3735/>. Last ac-

cess jan, 2017.

LXC. Official Page< https://linuxcontainers.org/>. Last access jan, 2017.

MAHMOOD, Z. Cloud Computing Methods and Practical Approaches. [S.l.]:

Springer, 2013.

MALISZEWSKI, A. M. et al. Desempenho das Operações de Criar e Deletar Instâncias

KVM Simultâneas em Nuvens CloudStack e OpenStack. In: ESCOLA REGIONAL

DE ALTO DESEMPENHO DO ESTADO DO RIO GRANDE DO SUL (ERAD/RS),

17., Ijuí, RS, Brazil. Anais. . . Sociedade Brasileira de Computação, 2017.

MARINESCU, D. C. Cloud Computing: theory and practice. [S.l.]: Elsevier, 2013.

MARON, C. A. F. Avaliação e Comparação da Computação de Alto Desempenho

em Ferramentas Opensource de Administração de Nuvem Usando Estações

De Trabalho. 2014. Dissertação (Mestrado em Ciência da Computação) — Under-

graduate Thesis, Sociedade Educacional Três de Maio (SETREM), Três de Maio,

RS, Brazil.

MARON, C. A. F. et al. Avaliação e Comparação do Desempenho das Ferramen-

tas OpenStack e OpenNebula. In: ESCOLA REGIONAL DE REDES DE COM-

PUTADORES (ERRC), 12., Canoas. Anais. . . Sociedade Brasileira de Computação,

2014. p.1–5.

MARON, C. A. F. et al. Desempenho de OpenStack e OpenNebula em Estações

de Trabalho: uma avaliação com microbenchmarks e npb. Revista Eletrônica

295

Argentina-Brasil de Tecnologias da Informação e da Comunicação (REABTIC),

Três de Maio, Brazil, v.6, n.1, p.15, December 2016.

MARON, C. A. F.; GRIEBLER, D.; SCHEPKE, C. Comparação das Ferramentas

OpenNebula e OpenStack em Nuvem Composta de Estações de Trabalho. In: ES-

COLA REGIONAL DE ALTO DESEMPENHO DO ESTADO DO RIO GRANDE DO

SUL (ERAD/RS), 14., Alegrete, RS, Brazil. Anais. . . Sociedade Brasileira de Com-

putação, 2014. p.173–176.

MATTHEWS, J. et al. Running Xen: a hands-on guide to the art of virtualization. [S.l.]:

Pearson Education, 2008.

MATTSON, T.; SANDERS, B.; MASSINGILL, B. Patterns for Parallel Programming.

[S.l.]: Pearson Education, 2004. (Software Patterns Series).

MAUCH, V.; KUNZE, M.; HILLENBRAND, M. High performance cloud computing. In-

ternational journal of high performance computing applications, [S.l.], v.9, n.2,

2012.

MAUCH, V.; KUNZE, M.; HILLENBRAND, M. High performance cloud computing. Fu-

ture Generation Computer Systems, [S.l.], v.29, n.6, p.1408–1416, 2013.

MCDOUGALL, R.; ANDERSON, J. Virtualization performance: perspectives and chal-

lenges ahead. ACM SIGOPS Operating Systems Review, [S.l.], v.44, n.4, p.40–56,

2010.

MEHROTRA, P. et al. Performance Evaluation of Amazon EC2 for NASA HPC Applica-

tions. ScienceCloud ’12 Proceedings of the 3rd workshop on Scientific Cloud

Computing, [S.l.], p.41–50, 2012.

MELL, P.; GRACE, T. The NIST definition of Clous Computing. [S.l.]: Computer

Security Division, Information Technology Laboratory, National Institute of Standards

and Technology, 2011. 7p. v.1.

296

MORABITO, R.; KJÄLLMAN, J.; KOMU, M. Hypervisors vs. lightghweit virtualization:

a performance comparison. In: CLOUD ENGINEERING (IC2E), 2015 IEEE INTER-

NATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2015. p.386–393.

MUKHEDKAR, P.; VETTATHU, A.; CHIRAMMAL, H. Mastering KVM Virtualization.

[S.l.]: Packt Publishing, Limited, 2016.

MULERIKKAL, J. P.; SASTRI, Y. A Comparative Study of OpenStack and CloudStack.

Advances in Computing and Communications (ICACC), 2015 Fifth International

Conference, [S.l.], p.1–4, 2015.

MÜLLER, M.; CHARYPAR, D.; GROSS, M. Particle-based fluid simulation for interac-

tive applications. In: ACM SIGGRAPH/EUROGRAPHICS SYMPOSIUM ON COM-

PUTER ANIMATION, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.154–159.

NAVARRO, A. et al. Analytical modeling of pipeline parallelism. In: PARALLEL ARCHI-

TECTURES AND COMPILATION TECHNIQUES, 2009. PACT’09. 18TH INTERNA-

TIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2009. p.281–290.

NEUHAUS, C. et al. A Practical Evaluation of Searchable Encryption for Data Archives

in the Cloud. In: INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND

SERVICES SCIENCE. Anais. . . [S.l.: s.n.], 2015. p.171–192.

NICHOLS, B.; BUTTLAR, D.; FARRELL, J. Pthreads programming: a posix standard

for better multiprocessing. [S.l.]: O’Reilly Media, Inc., 1996.

NICHOLS, B.; BUTTLAR, D.; FARRELL, J. P. Pthreads Programming: a posix stan-

dard for better multiprocessing. 1.ed. [S.l.]: O’Reilly Media, 1996. (O’Reilly Nutshell).

NIKOUNIA, S. H. et al. Hypervisor and Neighbors’ Noise: performance degradation in

virtualized environments. IEEE Transactions on Services Computing, [S.l.], 2015.

NIKOUNIA, S. H.; MOHAMMADI, S. Hypervisor and Neighbors’ Noise: performance

degradation in virtualized environments. IEEE Transactions on Services Comput-

ing, [S.l.], p.1–11, 2015.

297

NPB. NAS Parallel Benchmarks <https://www.nas.nasa.gov/publications/npb.html>.

Last access jan, 2017.

OGRIZOVIĆ, D.; CAR, Z.; KOVAČIĆ, B. Scientific Applications in Cloud Computing.

The IPSI BgD Transactions on Advanced Research, [S.l.], v.10, n.1, p.27–33,

2014.

OKADA, D. K.; GOLDMAN, A.; CAVALHEIRO, G. G. H. Using NAS Parallel Bench-

marks to Evaluate HPC Performance in Clouds. International Symposium on Net-

work Computing and Applications, [S.l.], p.1–4, 2016.

OPENSTACK. Official Page <https://www.openstack.org>. Last Access in jan, 2017.

OPENSTACK. Manila<https://wiki.openstack.org/wiki/manila>. Last access jan,

2017.

PARADOWSKI, A.; LIU, L.; YUAN, B. Benchmarking the Performance of Open-

stack and Cloudstack. In: IEEE 17TH INTERNATIONAL SYMPOSIUM ON

OBJECT/COMPONENT/SERVICE-ORIENTED REAL-TIME DISTRIBUTED COM-

PUTING, 2014. Anais. . . [S.l.: s.n.], 2014.

PARSEC. Princeton Application Repository for Shared-Memory Computers

<http://parsec.cs.princeton.edu/overview.htm>. Last access jan, 2017.

PARSEC. PARSEC <http://wiki.cs.princeton.edu/index.php/parsec#blackscholes>.

Last access jan, 2017.

PARSEC. PARSEC <http://wiki.cs.princeton.edu/index.php/parsec#bodytrack>. Last

access jan, 2017.

PARSEC. PARSEC <http://wiki.cs.princeton.edu/index.php/parsec#facesim>. Last

access jan, 2017.

PENNYCOOK, S. J. et al. Performance Analysis of a Hybrid MPICUDA Implementation

of the NASLU Benchmark. SIGMETRICS Perform. Eval. Rev., New York, NY, USA,

v.38, n.4, p.23–29, Mar. 2011.

298

PFLANZNER, T. et al. Performance Analysis of an OpenStack Private Cloud. , [S.l.],

v.2, p.282–289, 2016.

PILLA, L. L. Análise de desempenho da arquitetura CUDA utilizando os NAS parallel

benchmarks. , Porto Alegre, RS, Brazil, 2009.

PORTNOY, M. Virtualization Essentials. [S.l.]: Wiley, 2016.

PRODAN, R.; OSTERMANN, S. A survey and Taxonomy of Infrastructure as a Service

and Web Hosting Cloud Providers. Grid Computing 10th IEEE/ACM International

Conference, [S.l.], p.17–25, 2009.

PUJOLLE, G. Software Networks: virtualization, sdn, 5g, security. [S.l.]: Wiley, 2015.

n.v. 1. (Networks & Telecommunication: Advanced Networks).

QEMU. Main Page <http://wiki.qemu.org/main_page>. Last access jan, 2017.

RAMACHANDRAN, A. et al. Performance Evaluation of NAS Parallel Benchmarks on

Intel Xeon Phi. Parallel Processing (ICPP), 2013 42nd International Conference,

[S.l.], p.1–8, 2013.

REDDY, P. V. V.; RAJAMANI, L. Evaluation of different hypervisors performance in the

private cloud with SIGAR framework. International Journal of Advanced Com-

puter Science and Applications, [S.l.], v.5, n.2, 2014.

REGOLA, N.; DUCOM, J. C. Recommendations for Virtualization Technologies in High

Performance Computing. In: IEEE 2o CLOUDCOM, 2010. Anais. . . [S.l.: s.n.], 2010.

p.409–416.

ROLOFF, E. et al. High Performance Computing in the cloud: deployment, performance

and cost efficiency. In: CLOUD COMPUTING TECHNOLOGY AND SCIENCE

(CLOUDCOM), 2012 IEEE 4TH INTERNATIONAL CONFERENCE ON. Anais. . .

[S.l.: s.n.], 2012. p.371–378.

RON LARSON, B. F. Estatística Aplicada. 4a.ed. [S.l.]: Pearson Prentice Hall, 2010.

299

ROSSO, J. P. Análise de Desempenho de Aplicações Científicas em Ambiente

de Nuvem Privada. 2015. Dissertação (Mestrado em Ciência da Computação) —

Universidade Federal do Pampa (UNIPAMPA), Alegrete, RS, Brazil.

RUIZ, C.; JEANVOINE, E.; NUSSBAUM, L. Performance evaluation of containers for

HPC. 10th Workshop on Virtualization in High-Performance Cloud Computing,

[S.l.], p.1–13, 2015.

RUPARELIA, N. Cloud Computing. [S.l.]: MIT Press, 2016. (The MIT Press Essential

Knowledge series).

RUPARELIA, N. B. Cloud Computing. [S.l.]: MIT Press, 2016.

SABHARWAL, N. Apache CloudStack Cloud Computing. [S.l.]: Packt Publishing,

2013.

SADOOGHI, I. et al. Understanding the performance and potential of cloud computing

for scientific applications. IEEE Transactions on Cloud Computing, [S.l.], 2015.

SAINI, S. et al. An Application-Based Performance Evaluation of NASA’s Nebula

Cloud Computing Platform. High Performance Computing and Communication

2012 IEEE 9th International Conference on Embedded Software and Systems

(HPCC-ICESS), 2012 IEEE 14th International Conference, [S.l.], p.1–8, 2012.

SAKR, S.; GABER, M. Large Scale and Big Data: processing and management. [S.l.]:

Auerbach Publications,CRC Press, 2014.

SCHEEPERS, M. J. Virtualization and containerization of application infrastructure: a

comparison. In: TWENTE STUDENT CONFERENCE ON IT, 21. Anais. . . [S.l.: s.n.],

2014. p.1–7.

SHRIVASTWA, A.; SARAT, S. Learning OpenStack. [S.l.]: Packt Publishing, 2015.

SHROFF, G. Enterprise Cloud Computing: technology, architecture, applications.

[S.l.]: Cambridge University Press, 2010.

300

SILBERSCHATZ, A.; GALVIN, P.; GAGNE, G. Operating System Concepts. [S.l.]:

Wiley, 2012.

SILVA, M.; RYU, K. D.; DA SILVA, D. VM performance isolation to support qos in cloud.

In: PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS &

PHD FORUM (IPDPSW), 2012 IEEE 26TH INTERNATIONAL. Anais. . . [S.l.: s.n.],

2012. p.1144–1151.

SMOOT, S.; TAN, N. Private Cloud Computing: consolidation, virtualization, and

service-oriented infrastructure. [S.l.]: Elsevier Science, 2011.

SNIR, M. MPI–the Complete Reference: the mpi core. [S.l.]: MIT press, 1998. v.1.

SOSINSKY, B. Cloud Computing Bible. [S.l.]: Wiley, 2010. (Bible).

SOTOMAYOR, B. et al. Capacity leasing in cloud systems using the opennebula

engine. In: WORKSHOP ON CLOUD COMPUTING AND ITS APPLICATIONS.

Anais. . . [S.l.: s.n.], 2008. v.3.

SOUTHERN, G.; RENAU, J. Analysis of PARSEC Workload Scalability. Performance

Analysis of Systems and Software (ISPASS), [S.l.], p.1–0, 2016.

STEINMETZ, D. et al. Cloud computing performance benchmarking and virtual ma-

chine launch time. In: INFORMATION TECHNOLOGY EDUCATION, 13. Proceed-

ings. . . [S.l.: s.n.], 2012. p.89–90.

STONEBRAKER, M. et al. Enterprise Database Applications and the Cloud: a difficult

road ahead. In: IEEE INTERNATIONAL CONFERENCE ON CLOUD ENGINEER-

ING, 2014. Anais. . . [S.l.: s.n.], 2014. p.1–6.

STRAZDINS, P. E. et al. Scientific application performance on hpc, private and pub-

lic cloud resources: a case study using climate, cardiac model codes and the npb

benchmark suite. In: PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM

WORKSHOPS & PHD FORUM (IPDPSW), 2012 IEEE 26TH INTERNATIONAL.

Anais. . . [S.l.: s.n.], 2012. p.1416–1424.

301

TAN, T.; ARZBERGER, P.; KONAGAYA, A. Grid Computing in Life Sciences: ls-

grid2005, the second international life science grid workshop, biopolis, singapore,

5-6 may 2005. [S.l.]: World Scientific, 2006.

TANENBAUM, A. S.; AUSTIN, T. Organização Estruturada de Computadores. [S.l.]:

Pearson, 2013.

TANENBAUM, A. S.; BOS, H. Modern Operating Systems. 4th.ed. [S.l.]: Pearson,

2014.

TANENBAUM, A.; STEEN, M. van. Distributed Systems: principles and paradigms.

[S.l.]: Pearson Prentice Hall, 2007.

TELFER, S. The Crossroads of Cloud and HPC: openstack for scientific research.

[S.l.]: CreateSpace, 2016.

TORALDO, G. OpenNebula 3 Cloud Computing. [S.l.]: Packt Publishing, 2012.

UEDA, Y.; NAKATANI, T. Performance Variations of Two Open-Source Cloud Platforms.

In: WORKLOAD CHARACTERIZATION (IISWC). Anais. . . [S.l.: s.n.], 2010. p.1–10.

VARGHESE, B. et al. Container-Based Cloud Virtual Machine Benchmarking. In:

CLOUD ENGINEERING (IC2E), 2016 IEEE INTERNATIONAL CONFERENCE ON.

Anais. . . [S.l.: s.n.], 2016. p.192–201.

VECCHIOLA, C.; PANDEY, S.; BUYYA, R. High-Performance Cloud Computing A View

of Scientific Applications. , [S.l.], p.13, 2009.

VIRT-MANAGER. Manage virtual machines with virt-manager <https://virt-

manager.org/>. Last access jan, 2017.

VMWARE. Understanding Full Virtualization, Paravirtualization, and Hardware

Assist <http://www.vmware.com/content/dam/digitalmarketing/vmware/en/pdf/

techpaper/vmware_paravirtualization.pdf>. Last Acess in mar, 2017.

302

VOGEL, A. Surveying the Robustness and Analyzing the Performance Impact of

Open Source Infrastructure as a Service Management Tools. 2015. Dissertação

(Mestrado em Ciência da Computação) — Undergraduate Thesis, Sociedade Edu-

cacional Três de Maio (SETREM), Três de Maio, RS, Brazil.

VOGEL, A. et al. Private IaaS Clouds: a comparative analysis of opennebula, cloud-

stack and openstack. In: EUROMICRO INTERNATIONAL CONFERENCE ON PAR-

ALLEL, DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 24., Herak-

lion Crete, Greece. Anais. . . IEEE, 2016. p.672–679.

VOGEL, A. et al. Medindo o Desempenho de Implantações de OpenStack, Cloud-

Stack e OpenNebula em Aplicações Científicas. In: ESCOLA REGIONAL DE ALTO

DESEMPENHO DO ESTADO DO RIO GRANDE DO SUL (ERAD/RS), 16., São

Leopoldo, RS, Brazil. Anais. . . Sociedade Brasileira de Computação, 2016. p.279–

282.

VOGEL, A. et al. An Intra-Cloud Networking Performance Evaluation on CloudStack

Environment. In: EUROMICRO INTERNATIONAL CONFERENCE ON PARALLEL,

DISTRIBUTED AND NETWORK-BASED PROCESSING (PDP), 25., St. Petersburg,

Russia. Anais. . . IEEE, 2017. p.5.

WAKU, G. M. Massage Passing Interface(MPI). , [S.l.], p.13, 2012.

WALTERS, J. P. et al. A comparison of virtualization technologies for HPC. In: AD-

VANCED INFORMATION NETWORKING AND APPLICATIONS, 2008. AINA 2008.

22ND INTERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2008. p.861–868.

WHITE, S.; ALUND, A.; SUNDERAM, V. S. Performance of the NAS parallel bench-

marks on PVM-Based networks. Journal of Parallel and Distributed Computing,

[S.l.], v.26, n.1, p.61–71, 1995.

WHITTED, T. An improved illumination model for shaded display. In: ACM SIGGRAPH

2005 COURSES. Anais. . . [S.l.: s.n.], 2005. p.4.

303

WIJNGAART, R. F.; HAOPIANG, J. Nas parallel benchmarks, multi-zone versions.

[S.l.: s.n.], 2003.

WIJNGAART, R. F. Van der; FRUMKIN, M. NAS grid benchmarks version 1.0. , [S.l.],

2002.

WIJNGAART, R. F. Van der; SRIDHARAN, S.; LEE, V. W. Extending the BT NAS

parallel benchmark to exascale computing. In: INTERNATIONAL CONFERENCE

ON HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANAL-

YSIS. Proceedings. . . [S.l.: s.n.], 2012. p.94.

WILTER, A. et al. The biopaua project: a portal for molecular dynamics using grid envi-

ronment. In: BRAZILIAN SYMPOSIUM ON BIOINFORMATICS. Anais. . . [S.l.: s.n.],

2005. p.214–217.

WONG, P.; DER WIJNGAART, R. NAS parallel benchmarks I/O version 2.4. NASA

Ames Research Center, Moffet Field, CA, Tech. Rep. NAS-03-002, [S.l.], 2003.

XAVIER, M. G. et al. Performance evaluation of container-based virtualization for

high performance computing environments. In: PARALLEL, DISTRIBUTED AND

NETWORK-BASED PROCESSING (PDP), 2013 21ST EUROMICRO INTERNA-

TIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2013. p.233–240.

XAVIER, M. G. et al. A Performance Isolation Analysis of Disk-intensive Workloads on

Container-based Clouds. Parallel, Distributed and Network-Based Processing

(PDP), 2015 23rd Euromicro International Conference, [S.l.], p.1–8, 2015.

XU, F. et al. Managing performance overhead of virtual machines in cloud computing: a

survey, state of the art, and future directions. Proceedings of the IEEE, [S.l.], v.102,

n.1, p.11–31, 2014.

XU, F.; LIU, F.; VASILAKOS, A. V. Managing Performance Overhead in Cloud Comput-

ing: a survey, state of the art, and future directions. IEEE, [S.l.], v.102, p.21, 2014.

304

YANG, L. T.; GUO, M. High-Performance Computing : paradigm and infrastructure.

[S.l.]: Wiley-Interscience, 2005.

ZHANG, J.; LU, X.; K., D. Performance Characterization of Hypervisor and Container-

based Virtualization for HPC on SR-IOV Enabled InfiniBand Clusters. International

Parallel and Distributed Processing Symposium Workshop, [S.l.], p.1–8, 2016.

ZHANG, J.; LU, X.; PANDA, D. K. Performance Characterization of Hypervisor-and

Container-Based Virtualization for HPC on SR-IOV Enabled InfiniBand Clusters. In:

PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, 2016

IEEE INTERNATIONAL. Anais. . . [S.l.: s.n.], 2016. p.1777–1784.

ZHANG, Y. et al. Parallelization of the nas conjugate gradient benchmark using

the global arrays shared memory programming model. In: PARALLEL AND DIS-

TRIBUTED PROCESSING SYMPOSIUM, 2005. PROCEEDINGS. 19TH IEEE IN-

TERNATIONAL. Anais. . . [S.l.: s.n.], 2005. p.8–pp.

ZHOU, L. et al. Virtual Machine Scheduling for Parallel Soft Real-Time Applications.

Modeling, Analysis Simulation of Computer and Telecommunication Systems

(MASCOTS), 2013 IEEE 21st International Symposium, [S.l.], p.1–10, 2013.

ZHU, J. Quantitative Models for Performance Evaluation and Benchmarking: data

envelopment analysis with spreadsheets. [S.l.]: Springer International Publishing,

2014. (International Series in Operations Research & Management Science).

